
Agricultural and Environmental Policy Models:

Calibration, Estimation and Optimization

Richard E. Howitt

January 18, 2005



ii



Contents

1 Introduction 1
1.1 Introduction to Linear Models . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition of a Model . . . . . . . . . . . . . . . . . . 1
1.1.2 Types of Models . . . . . . . . . . . . . . . . . . . . . 2

Verbal Models . . . . . . . . . . . . . . . . . . . . . . 2
Geometric (Graphical) Models . . . . . . . . . . . . . 2
Mathematical Models . . . . . . . . . . . . . . . . . . 3
The Development of Computational Economics . . . . 3

1.1.3 Uses for Models . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Types of Policy Models . . . . . . . . . . . . . . . . . 5

Econometric Models (Positive Degrees of Freedom) . . 5
Constrained Structural Optimization (Programming)

Models . . . . . . . . . . . . . . . . . . . . . 6
Calibrated Positive Programming (PMP) Models (Zero

Degrees of Freedom) . . . . . . . . . . . . . . 7
Computable General Equilibrium (CGE) Models . . . 7
Ill-Posed Maximum Entropy (ME) Models (Negative

Degrees of Freedom) . . . . . . . . . . . . . . 7
1.1.5 Selecting Policy Models . . . . . . . . . . . . . . . . . 7

2 Specifying Linear Models 9
2.1 Constrained versus Unconstrained Models . . . . . . . . . . . 9
2.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Yolo County Farm Model Example . . . . . . . . . . . 11
2.2.2 The General Formulation of a Linear Program . . . . 12

2.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Other Examples of Production Transformations . . . . 14

2.4 Linear Algebra Definitions Used in Linear Programming . . . 14
2.5 Existence of Solutions . . . . . . . . . . . . . . . . . . . . . . 15

iii



iv CONTENTS

2.6 A Homogenous System . . . . . . . . . . . . . . . . . . . . . . 16
2.6.1 Case 1: No Solution to the System Exists . . . . . . . 16
2.6.2 Case 2: The System has an Infinite Number of Solutions 17
2.6.3 Case 3: A Unique Solution Exists to the System . . . 18
2.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Basic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.1 A Notation Change . . . . . . . . . . . . . . . . . . . 18

2.8 Slack and Surplus Variables . . . . . . . . . . . . . . . . . . . 22
2.9 Objective Function Specification . . . . . . . . . . . . . . . . 23

2.9.1 Yolo Farm Example . . . . . . . . . . . . . . . . . . . 23
2.10 Specifying Linear Constraints . . . . . . . . . . . . . . . . . . 24

2.10.1 Types of Constraints . . . . . . . . . . . . . . . . . . . 24
2.11 Linear Transportation Problems . . . . . . . . . . . . . . . . 26
2.12 Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Solving Linear Models 29
3.1 Solution Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Extreme Points and Basic Solutions . . . . . . . . . . 30
3.2 The Fundamental Theorem of Linear Programming . . . . . . 31
3.3 The Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 The Entering Activity Rule . . . . . . . . . . . . . . . 34
3.3.2 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 An Outline of the Simplex Method . . . . . . . . . . . . . . . 36
3.5 A Matrix Simplex Solution Example . . . . . . . . . . . . . . 40

4 The Dual Problem 45
4.1 Primal and Dual Objective Functions . . . . . . . . . . . . . 45
4.2 The Economic Meaning of the Dual . . . . . . . . . . . . . . 46

4.2.1 Dual Objective function . . . . . . . . . . . . . . . . . 46
4.3 Dual Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Music Production Example . . . . . . . . . . . . . . . 47
4.4 Showing the Primal/Dual Linkage . . . . . . . . . . . . . . . 48

4.4.1 Primal Problem . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Dual Problem . . . . . . . . . . . . . . . . . . . . . . . 49

Feasibility of λ . . . . . . . . . . . . . . . . . . . . . . 49
Optimality of λ . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Numerical Matrix Example — Yolo Model . . . . . . . . . . . 50
4.6 Parametric Analysis . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.1 Generating Derived Demand Functions for Inputs . . 52
4.6.2 Generating Supply Functions for Outputs . . . . . . . 54



CONTENTS v

Non-Basis activity supply parameterization . . . . . . 54
Basis activity supply parameterization . . . . . . . . . 54

4.7 Complementary Slackness . . . . . . . . . . . . . . . . . . . . 55
4.7.1 Primal Complementary Slackness . . . . . . . . . . . . 55
4.7.2 Dual Complementary Slackness . . . . . . . . . . . . . 55

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 56
The “Free Lunch” Theorem . . . . . . . . . . . . . . . 56
Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7.3 Demonstrating Complementary Slackness . . . . . . . 57
Case I: Show that: xi > 0 ⇒ c′i − λ′ai = 0 . . . . . . . 57
Case II: Show that: xi = 0 ⇒ c′i − λ′ai < 0 . . . . . . 57
Example: Auto Dealer Hype . . . . . . . . . . . . . . 58

4.7.4 Duality and Reduced Cost . . . . . . . . . . . . . . . . 58
4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 PMP Calibration of Optimization Models 61
5.1 Calibrating on the Model Supply Side . . . . . . . . . . . . . 62

5.1.1 A Review of Supply Side Constraint Calibration . . . 62
5.2 Positive Mathematical Programming . . . . . . . . . . . . . . 66

5.2.1 Behavioral Calibration Theory . . . . . . . . . . . . . 66
5.2.2 A Cost-Based Approach to PMP Calibration. . . . . . 75

Single Crop Cost-Based PMP Calibration . . . . . . . 75
5.2.3 An Analytic Derivation of Calibration Functions . . . 77

5.3 An Empirical Calibration Method . . . . . . . . . . . . . . . 81
5.3.1 Calibration Using Supply Elasticity Estimates . . . . . 87
5.3.2 Calibrating Marginal Crops . . . . . . . . . . . . . . . 88

5.4 Calibrating Production and Intermediate Activities . . . . . . 91
5.4.1 A Crop and Livestock Farm Model . . . . . . . . . . . 91

5.5 Policy Modeling with PMP . . . . . . . . . . . . . . . . . . . 93

6 Nonlinear Duality, Prices, and Risk 95
6.1 Duality in Nonlinear Models . . . . . . . . . . . . . . . . . . . 95

6.1.1 Deriving the Dual for Nonlinear Problems . . . . . . . 95
6.1.2 The Economic Interpretation Nonlinear Dual Problems 97

The Dual Objective Function . . . . . . . . . . . . . . 97
The Dual Constraints . . . . . . . . . . . . . . . . . . 97
Nonlinear Dual Values for Resources . . . . . . . . . . 98

6.1.3 Parameterizing Nonlinear Problems . . . . . . . . . . 98
6.1.4 An Empirical Example . . . . . . . . . . . . . . . . . . 99

6.2 Endogenous Supply and Demand . . . . . . . . . . . . . . . . 100



vi CONTENTS

6.2.1 Case I: Changes in Output Price Only . . . . . . . . . 100
A Monopolist Objective Function . . . . . . . . . . . 101
The Perfect Competition Objective Function . . . . . 102
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.2 Case II: Aggregate Perfect Competition — Endoge-
nous Prices and Costs . . . . . . . . . . . . . . . . . . 105
The Interpretation of the Objective Function . . . . . 107

6.2.3 Case III: Inter-regional Trade Models . . . . . . . . . 107
Price Dependent Optimal Inter-regional Trade Speci-

fication . . . . . . . . . . . . . . . . . . . . . 108
The Quantity Dependent Interregional Trade Problem 109

6.2.4 Calibrating Demands Using Elasticity Estimates . . . 110
6.3 Incorporating Risk and Uncertainty . . . . . . . . . . . . . . 111

6.3.1 The Effect of Uncertainty and Risk Aversion . . . . . 112
6.3.2 Measuring Risk Aversion- E/V Analysis . . . . . . . . 113
6.3.3 Chance Constrained Programming . . . . . . . . . . . 114

Case: A Single Right Hand Side Value bi is Normally
Distributed . . . . . . . . . . . . . . . . . . . 114

Probability Review . . . . . . . . . . . . . . . . . . . . 115
Z Table Review . . . . . . . . . . . . . . . . . . . . . . 115
The Problem . . . . . . . . . . . . . . . . . . . . . . . 115
A Numerical Example . . . . . . . . . . . . . . . . . . 118

6.3.4 Uncertainty in the Technical Coefficients . . . . . . . . 118

7 Yield and Production Functions 121
7.1 Calibrating with Known Yield Functions . . . . . . . . . . . . 122
7.2 Calibrating with Known Isoquants . . . . . . . . . . . . . . . 123
7.3 Calibrating CES Production Functions . . . . . . . . . . . . 125

7.3.1 CES Parameter Derivation . . . . . . . . . . . . . . . 125
7.3.2 The Empirical Application of CES Calibration . . . . 127

7.4 Using a Nested CES Production Function . . . . . . . . . . . 130
7.4.1 The Nested CES Production Function . . . . . . . . . 131
7.4.2 An Application- Measuring Energy Cost Effects . . . 132

7.5 Microeconomic Properties of Calibrated Production Models . 134

8 Nonlinear Optimization Methods 137
8.1 Mathematics For Nonlinear Optimization . . . . . . . . . . . 137

8.1.1 Concave Functions and Convex Sets . . . . . . . . . . 137
Concave Function . . . . . . . . . . . . . . . . . . . . 137

8.1.2 Taylor Series Expansion . . . . . . . . . . . . . . . . . 139



CONTENTS vii

8.1.3 Matrix Derivatives . . . . . . . . . . . . . . . . . . . . 139
Linear form . . . . . . . . . . . . . . . . . . . . . . . . 139
Quadratic form . . . . . . . . . . . . . . . . . . . . . . 140

8.1.4 The Gradient Vector (∇f(x)) . . . . . . . . . . . . . . 140
8.1.5 Inner Products . . . . . . . . . . . . . . . . . . . . . . 140
8.1.6 Hessian and Jacobian Matrices . . . . . . . . . . . . . 140

Hessian matrix . . . . . . . . . . . . . . . . . . . . . . 140
Jacobian matrix . . . . . . . . . . . . . . . . . . . . . 141

8.1.7 Taylor series expansion of a Vector Function . . . . . 141
8.1.8 Definite Quadratic Forms . . . . . . . . . . . . . . . . 141

Positive Definite Quadratic Form . . . . . . . . . . . . 141
Positive Semidefinite Quadratic Form . . . . . . . . . 142

8.2 An Introduction to Nonlinear Optimization . . . . . . . . . . 142
8.2.1 Some Non Linear Programming (NLP) Definitions . . 142

The Standard NLP Problem . . . . . . . . . . . . . . 142
Local Minima . . . . . . . . . . . . . . . . . . . . . . . 142
Global Minima . . . . . . . . . . . . . . . . . . . . . . 142
Feasible Directions . . . . . . . . . . . . . . . . . . . . 143

8.2.2 Nonlinear First Order Conditions . . . . . . . . . . . . 144
Local Minimum Point — Constrained Problem . . . . 144

8.2.3 Proof of First Order Condition . . . . . . . . . . . . . 145
The Unconstrained Problem . . . . . . . . . . . . . . . 146
Unconstrained Optimization Example . . . . . . . . . 146
Constrained Optimization Example . . . . . . . . . . . 146

8.3 Steepest Descent Algorithms . . . . . . . . . . . . . . . . . . 147
8.3.1 Steepest Descent Direction . . . . . . . . . . . . . . . 147
8.3.2 An Outline of the Gradient Algorithm . . . . . . . . . 148
8.3.3 Practical Problems with gradient Algorithms . . . . . 150

Starting points . . . . . . . . . . . . . . . . . . . . . . 150
Step size . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.4 Reduced gradients . . . . . . . . . . . . . . . . . . . . . . . . 152
8.4.1 Necessary Condition . . . . . . . . . . . . . . . . . . . 154

8.5 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.5.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.5.2 Caveats on Newton’s Method . . . . . . . . . . . . . . 155
8.5.3 Criteria for Non-Linear Algorithms . . . . . . . . . . . 155
8.5.4 Newton Step size . . . . . . . . . . . . . . . . . . . . . 156
8.5.5 Movement Towards a Minimum . . . . . . . . . . . . . 156
8.5.6 Desired Conditions for Hxk

. . . . . . . . . . . . . . . 156



viii CONTENTS

8.5.7 Reconditioning the Hessian . . . . . . . . . . . . . . . 156

9 Calibration with Maximum Entropy 159
9.1 Measuring Information . . . . . . . . . . . . . . . . . . . . . . 159

9.1.1 The “Loaded” Dice Example . . . . . . . . . . . . . . 161
9.1.2 A Simple Example of Maximum Entropy Parameter

Estimation . . . . . . . . . . . . . . . . . . . . . . . . 163
9.1.3 The Maximum Entropy Solution . . . . . . . . . . . . 164

9.2 Maximum Entropy PMP Modeling . . . . . . . . . . . . . . . 165
9.2.1 The Basic ME-PMP Model . . . . . . . . . . . . . . . 165
9.2.2 Defining the Support Space Values — z-values . . . . 165

Feasible Supports . . . . . . . . . . . . . . . . . . . . . 166
9.2.3 Adding Curvature Conditions by Cholesky Decompo-

sitions: . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2.4 Implementing ME-PMP on the Yolo County Model . . 167

9.3 Using Prior Elasticities- The Heckelei-Britz ME-PMP Ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.4 Obtaining Consistent Estimates of Resource Shadow Values 170
9.4.1 The Symmetric Positive Equilibrium Model: . . . . . . 170
9.4.2 The Heckelei and Wolff Critique and Solution: . . . . 170

9.5 Reconstructing Production Function Models . . . . . . . . . 171
9.5.1 Calculating Comparative Static Parameters . . . . . 174
9.5.2 Using Alternative Functional forms for the Production

Function . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10 Empirical Dynamic Policy Models 179
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.2 The Value Iteration Approach . . . . . . . . . . . . . . . . . . 181
10.3 A Classical Growth Model Example . . . . . . . . . . . . . . 184
10.4 Solving SDP Problems . . . . . . . . . . . . . . . . . . . . . . 185

10.4.1 The General SDP Formulation . . . . . . . . . . . . . 188
10.5 North Platte River Application . . . . . . . . . . . . . . . . . 194

The SDP Specification . . . . . . . . . . . . . . . . . . 195
10.5.1 Solving the model . . . . . . . . . . . . . . . . . . . . 196
10.5.2 Using SDP as a policy tool . . . . . . . . . . . . . . . 198

10.6 Intertemporal Calibration and Estimation . . . . . . . . . . . 200
10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200



Chapter 1

Introduction

1.1 Introduction to Linear Models

1.1.1 Definition of a Model

Everyone uses models to think about complex problems. Usually our model
is a simple weighting of past experiences that simplifies decisions. For ex-
ample, after an initial learning period most people drive a car with a model
that assumes a certain steering and braking action and only make radical
changes from an established pattern when an unexpected emergency oc-
curs. After the emergency most drivers return to their basic model. Why
is the model of driving by exception normally optimal? The answer is that
this driving model reduces the number of standard decisions that we have to
think about and allows us to be more observant for the exceptional situation
that requires a different action.

It is often thought that models are limited to algebraic representations
and, as such, are hard to construct or interpret. This puts up an arti-
ficial barrier to mathematical models that often prevents an evolutionary
approach to thinking about them. In reality, everyone uses models to think
about complex events, as the process of constructing a model is part of the
human process of thinking by analogy. For example, many people use as-
trology to guide their decisions, a curious but ancient model of relating the
position of planets and stars to events in their lives. Skeptics point out that
the ambiguity of most astrological forecasts makes quantitative measures
hard to confirm. Perhaps they miss the point of astrology, which may not
be to accurately predict events, but to give illusion of knowledge over unpre-
dictable events. However, as economists we should be interested in astrology
as a product for which the demand has been strong for several millennia.

1



2 CHAPTER 1. INTRODUCTION

For this book, the point is to see mathematical models as a practical
extension of the graphical models with which we started our micro economic
analysis. Mathematical models allow us to explore many more dimensions
and interactions than graphical representations, but often we can usefully
use simple graphical examples to clarify a mathematical problem. With
their larger number of variables, mathematical models can be specified in a
more realistic manner than graphical analysis but are still limited by data
and computational requirements.

A model is by definition abstracted and simplified from reality and should
be judged by its ability to deliver the required precision of information for the
task in hand. It is easy in economics to judge a model on its mathematical
elegance or originality, that is, as a work of art or artifact rather than a tool

1.1.2 Types of Models

Verbal Models

Thomas Kuhn has proposed that most scientific thought takes place within
paradigms that gradually evolve. Given the evolutionary nature of sci-
ence it is not surprising that most research takes place within a paradigm
rather than trying to change paradigms. One of the older and best-known
paradigms in economics is Smith’s analogy of the price and market system
to an “invisible hand.” Simple verbal models such as this are very helpful
in concisely defining the qualitative properties of a paradigm. The ability
to give a simple verbal explanation of the model is probably a necessary
condition for full understanding of a complex mathematical model. If you
are unable to explain the essence of what you are modeling to your Grand-
mother, you probably don’t really understand it.

Geometric (Graphical) Models

Geometric methods are the way that we are introduced to economic models
and a method where our natural spatial instincts are more easily harnessed
to show interrelationships between functions and equilibria. For most em-
pirical applications, graphical models in two or three dimensions are simply
too small to adequately represent the empirical relationships needed. Most
graphical models can be represented by a system of two equations, whereas
optimization models that we will encounter later in the book can have tens
or hundreds of equations and variables. However, like verbal models, graph-
ical models are very useful for conceptualizing mathematical relationships
before extending them to multidimensional cases.
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Mathematical Models

In economics, the term model has become synonymous with algebraic mod-
els since they have been the essential tools for empirical and theoretical work
for the past five decades. For this book, a critical difference in model speci-
fication is between optimizing behavioral models and optimizing structural
models.

Behavioral models yield equations that describe the outcome of optimiz-
ing behavior by the economic agent. Assuming that optimizing behavior
of some sort has driven the observed actions allows us to deduce values of
the parameters that underlie it. For example, observations on the different
amounts of a commodity purchased as its price changes, allows the specifi-
cation and estimation of the elasticity of demand.

An alternative approach to specification of this problem is to define struc-
tural equations for the consumer’s utility function, represent the budget
constraint and alternative products as a set of constraint equations, and
explicitly solve the resulting utility optimization problem for the optimal
purchase quantity under different prices. With a deterministic model and
a full set of parameters, both these approaches would yield the same equi-
librium. However this situation rarely occurs and each approach has its
relative advantages.

Another distinction is between positive and normative models. Behav-
ioral models are invariably positive models where the purpose is to model
what economic agents actually do. In contrast, structural models are of-
ten normative and are designed to yield results that show what the optimal
economic outcome should be. Inevitably normative models require some ob-
jective function that purports to represent a social objective function. This
is very difficult to specify without strong value judgments.

The Development of Computational Economics

In the past, it has usually been the case that econometric models are pos-
itive and programming models are normative since they have an explicitly
optimized objective function. This has led to an unfortunate methodolog-
ical division among empirical modelers on the supply side of Agricultural
and Development economics into practitioners of econometric and program-
ming approaches. The difference in approach has been divided along the
lines of normative and positive models in the past. With the development
of calibration techniques for optimization models, programming approaches
can now incorporate some positive data based parameters and thus build a
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continuous connection from the pure data based econometrically estimated
models through to the linearly constrained programming models. From one
viewpoint econometric models are data intensive while calibrated nonlinear
optimization models are more computationally intensive.

In recent years the sub-discipline of has emerged, driven initially by the
empirical application of macro-economic models, but now used extensively
for micro economic applications. The two leading texts in the area are
“Applied Computational Economics and Finance” and “Numerical Methods
in Economics” (Miranda and Fackler, 2002; Judd, 1999).

As we would expect, shifts in both the supply and demand have stim-
ulated the emergence of this new economic field. The shift in the supply
function of computation ability and cost has largely been driven by which
states that “The number of transistors on a given chip doubles every eigh-
teen months without any increase in cost.” This remarkable trend, which
was first proposed by Gordon Moore, a co-founder of Intel, is predicted to
continue until at least 2010. Clearly we are in the middle of a dramatic
reduction in the cost of computation. Along with the changes in hardware
supply, there have been similar changes stimulated in the supply of software
for computational economics.

The demand for computational economics is also shifting out due to
the increasing in stochastic dynamic problems in applied economic analy-
sis. Most realistic problems in stochastic dynamics and game theory are
simply too complicated to solve analytically, and like most empirical sci-
ences, economics will increasingly have to rely on numerical methods to test
hypotheses and predict behavior.

Of more concern to those in this book is the fact that growth areas for
applied economic analysis are in environmental, resource and development
economics. Both these fields are characterized by the absence of large reliable
data series and the need for disaggregate analysis. It’s not that econometric
approaches are unsuited to supply side analysis in these areas, its just that
the data needed is usually absent.

These two shifts bode well for the growth in optimization models in the
future. While there are many books on optimization modeling using linear
and quadratic structural approaches, for example Paris (1991) and Hazell
and Norton (1986), there is no published text on calibrating micro-economic
models. This reader is a start on an introductory text for calibrating opti-
mization models.

Chapters 1 – 4 are a brief introduction to the specification, solution and
interpretation of linear structural models. The specification and solutions
are defined in terms of linear algebra for reasons of compactness, clarity and
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continuity with the remaining sections. Chapters 5 – 11 give an introduction
to the development of nonlinear calibrated behavioral models.1

1.1.3 Uses for Models

Given an economic phenomenon there are three tasks that we may want to
perform with economic models.

1. Explaining observed actions This is usually performed by structural
analysis using positive econometric models. Given a structure in the
form of a specific set of equations, the parameters that most closely
explain the observed behavior are accepted as the most likely expla-
nation.

2. Predicting economic phenomena As the Druids found out with Stone-
henge, forecasting significant economic events is a source of power.
Forecasting models are the ultimate outcome of the positivistic view-
point where the structure is unimportant in itself and the accuracy
of the out of sample forecast is the key determinant of model value.
Econometric time series models are the best examples of pure fore-
casting models, although the ability to produce accurate out of sample
forecasts should be used to assess the information value of all types of
models.

3. Policy models controlling or influencing certain economic outcomes
This process is generally referred to as policy evaluation since public
economic policies are justified on the basis of improving some set of
economic values. Both structural econometric and optimization mod-
els are used for policy evaluation, however due to the dearth of sample
data and the wealth of physical structural data; policy models of agri-
cultural production and resource use are often specified as optimization
models.

1.1.4 Types of Policy Models

Econometric Models (Positive Degrees of Freedom)

Econometric structural models have been the standard approach to agri-
cultural economic models for the past twenty years. Econometric models

1Note — the ARE252 reader only contains chapters 1–9.
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of agricultural production offer a more flexible and theoretically consis-
tent specification of the technology than programming models. In addi-
tion, econometric methods are able to test the relevance of given constraints
and parameters given an adequate data set. The initial econometric re-
search on production models was performed on aggregated data for multi-
output/multi-input systems, or single commodities for more disaggregated
specifications. However, despite several methodological developments econo-
metric methods are rarely used for disaggregated empirical microeconomic
policy models of agricultural production. This is usually because time series
data is not generally available on a disaggregated basis and the assumptions
needed for cross-section analysis are not usually acceptable to policy mak-
ers with regional constituencies. In short, flexible form econometric models
have not fulfilled their empirical promise mostly due to data problems that
do not appear to be improving.

Constrained Structural Optimization (Programming) Models

Optimization models have a long history of use in agricultural economic
production analysis. There is a natural progression from the partial budget
farm management analysis that comprised much of the early work in agri-
cultural production to linear programming models based on activity analysis
and linear production technology. Often linear specifications of agricultural
production are sufficiently close to the actual technology to be an accu-
rate representation. In other cases the linear decision rule implied by many
Linear Programming (LP) models is optimal due to Leontief or Von Liebig
technology in agriculture.

Despite the emphasis of methodological development for econometric
models, programming models are still the dominant method for microanal-
ysis of agricultural production and resource use. Their applications are
widespread due to their ability to reproduce detailed constrained output de-
cisions and their minimal data requirements. As noted above, econometric
model applications on a microeconomic basis are hobbled by extensive data
requirements.

LP models are also limited largely to normative applications as attempts
to calibrate them to actual behavior by adding constraints or risk terms have
not been very successful.
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Calibrated Positive Programming (PMP) Models (Zero Degrees
of Freedom)

Much of this book is focused around a method of calibrating programming
models in a positive manner that has been a major focus of my research
over many years (Howitt, 1995b). The approach uses the observed alloca-
tions of crops and livestock to derive nonlinear cost functions that calibrate
the model without adding unrealistic constraints. The approach is called
Positive Mathematical Programming (PMP). The focus of the book is on
specifying, solving and interpreting several Positive and Normative Pro-
gramming models used in Agricultural and Environmental Economics

Computable General Equilibrium (CGE) Models

CGE models have been used in macro-economic and sectoral applications for
the past fifteen years, using a combination of fixed linear proportions from
(SAMs) and calibrated parameters from exogenous elasticities of supply and
demand. CGE models have much in common with PMP models in their
data requirements and conceptual calibration approach. They will not be
addressed directly in this book due to space constraints.

Ill-Posed Maximum Entropy (ME) Models (Negative Degrees of
Freedom)

This class of models is emerging as extensions of both PMP and economet-
ric approaches. Briefly this approach enables consistent reconstruction of
detailed flexible form models of cost or production functions on a disaggre-
gated basis. Often the more complex specifications require that the model
contain more parameters than there are observations — hence the term Ill-
Posed” problems. We will use two versions of these ME models in the last
part of the book, but will not explore the entropy estimation in any depth.
An early application of ME to micro production in agriculture is found in
Paris and Howitt (1998).

1.1.5 Selecting Policy Models

Selection of the best model for the research task at hand is an art rather
than a science. The model builder is constantly balancing the requirements
of realism that complicate the model specification and solution against the
practicality of the model in terms of its data and computational require-
ments. This trade-off is similar to the selection of the optimal photographic
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models for a mail order catalog where the publisher has to make the subjec-
tive trade off between the beauty of the model and the degree of realism that
the model will portray. The optimal customer response to the catalog will
come from models who are eye-catching but with whom the customers can
identify. In economic policy models, they must be simple enough so that the
decision maker can identify with the model concept, but at the same time
be tractable and able to reproduce the base year data.

There is no ideal model, just some that are more manageable and useful
than others. In the words of G.E.P. Box, “All models are wrong, but some
are useful.”

The aim of this book is first: to give you the theoretical and empir-
ical tools to make informed decisions on the best model specification for
particular data and research situations. Second, having selected an empri-
cal modeling method, to give you the ability to implement the model and
interpret the results.

The process of econometric model building has three well-defined stages:
Specification, Estimation, and Simulation. Programming model building
methods have not formally separated these stages. The equivalent stages are
Specification, Calibration and Policy Optimization. However the important
process of calibrating the models is usually buried in the model specification
stage, and often accomplished by the ad hoc method of adding increasingly
unrealistic constraints to the model. One of the few programming model
texts that even mentions model calibration is Hazell and Norton (1986),
who briefly address calibration tests more than methods. This book will
explicitly address these different stages of optimization model building and
differs from the usual treatment by having a strong emphasis on model
calibration.



Chapter 2

Specifying Linear Models

2.1 Constrained versus Unconstrained Models

Simple graphical models and nonlinear models in micro-economic texts are
represented as unconstrained demand and supply functions that are opti-
mized using calculus. A simple profit maximizing output is calculated given
the following specification.

Given the general nonlinear production function q = f(x1, x2), the price
of the output q is p per unit output, and the cost per unit of input xi is wi.

If the objective is to maximize the profit Π subject to the production
function f(·), the model is specified as:

maxΠ = pq − x1w1 − x2w2

subject to q = f(x1, x2)

This equality constrained and differentiable problem can be expressed
by the familiar Lagrangian function formulation, which by introducing the
multiplier λ enables the equality constraint to be incorporated with the
objective function. The resulting Lagrangian function can be optimized like
an unconstrained function.

L = pq −
∑

∀i
xiwi − λ[q − f(x1, x2)] (2.1)

Figure 2.1 represents the Lagrangian function, which can be maximized
by the usual unconstrained approach of taking the partial derivatives ∂L

∂xi

and setting them equal to zero.
If the production function is defined as a linear relationship, defining a

Leontief technology with fixed proportions of inputs per unit output, the

9
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Xi

L

Figure 2.1: the Lagrangian function

problem becomes:

max Π = pq − x1w1 − x2w2

subject to q = Min[a1x1, a2x2]
x1 ≤ b1

x2 ≤ b2

This linear profit maximizing production problem can be solved as a
Lagrangian, and it can also be rewritten using linear algebra. Note that
there is only one constraint in this example.

max c′x
subject to Ax ≤ b

where c′ = [p,−w1,−w2] and ã1 = [1,−a1,−a2], ã2 = [0, 1, 0], ã3 = [0, 0, 1],
and b′ = [0, b1, b2]. The vector of input and output activities is: x′ =
[q, x1, x2]. Try multiplying this out to check that it is the same problem as
above.
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2.2 Linear Programming

Linear Program: The equality constraint on the production function
above is restrictive in that it implies that all the resources have to be exactly
used up in the production processes. Given the nature of farm inputs such
as land, labor, tractor time etc, inputs are available in certain quantities,
but often they are not fully used up by the optimal production set in a given
year. The relationship between the output levels q and the input levels x
should be specified as inequality constraints for a more realistic and general
specification. This inequality specification results in the Linear Program
specification.

Given a set of m inequality constraints in n variables (x), we want to
find the non-negative values of a vector x which satisfies the constraints and
maximizes some objective function.

2.2.1 Yolo County Farm Model Example

In many places in this book we will use the following simple farm problem
as a template. It is based loosely on my local agriculture in Yolo County,
and we use the Yolo template to learn how linear programs are specified,
solved and interpreted. We will solve it for both analytical and empirical
programming exercises.

The farm has the possibility of producing four different crops: alfalfa,
wheat, corn and tomatoes. Yields are fixed, so we can measure output by
the number of acres of land allocated to each crop. The objective function is
measured directly in net returns to a unit of land. This is usually measured
in terms of “gross margins” with the variable costs subtracted from revenues
for simplicity. Constraints on production are all inequalities and represent
the maximum amounts of land, water, and labor available, and a contract
marketing constraint on the maximum quantity of tomatoes that the farmer
can sell in any year.

The resulting linear program can be written as follows:
Maximize the scalar product of net returns: c′x subject to Ax ≤ b, where

A is the matrix of technical coefficients, b is the vector of input resources
available and x is the vector of production or activity levels.1

The choice variables (measured in acres of land) are: x1 = Alfalfa, x2 =
Wheat, x3 = Corn, and x4 = Tomato.

The Objective Function, Π = 121x1 + 160x2 + 135x3 + 825x4 (with the

1Remember that both c and x are n× 1.
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net revenue here measured in dollars) is maximized subject to Ax ≤ b, e.g.:

Land (acres)
Water (acre− feet)

Labor (hours)
Contract (tons)




1.0 1.0 1.0 1.0
4.5 2.5 3.5 3.25
6.0 4.2 5.6 14.0
0.0 0.0 0.0 33.25







x1

x2

x3

x4




≤
≤
≤
≤




600.0
1800.0
5000.0
6000.0




The optimal solution is x′ = [0.0, 419.549, 0.0, 180.451]
Note that because there are only two binding constraints, there are only

two non-zero activities in the optimal solution. We expect tomatoes to come
into the profit maximizing solution since they have a high profit margin per
unit of land.

On one acre, we can grow 33.25 tons, but can only sell 6000 tons to the
processor. Therefore, the maximum acres of tomatoes is:

6000 tons

33.25 tons/acre
= 180.451 acres

The rest of the land (600 − 180.451 = 419.549) is used for the next most
profitable crop, wheat. This optimal solution is not constrained by either
water or labor (i.e., they are not binding).

2.2.2 The General Formulation of a Linear Program

Columns →
Row Name ↓ x1 x2 · · xn RHS

Objective Function c1 c2 · · cn

Resource Constraints
1 a11 a12 · · a1n ≤ b1

2 a21 a22 · · a2n ≤ b2
...

...
...

...
...

... ≤ ...
m am1 am2 · · amn ≤ bm

Alternatively,the previous problem can be written in a compact form:

max c′x
subject to Ax ≤ b, x ≥ 0
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2.3 Transformations

Economics is about transformations. In production the transformation is
between inputs and outputs, and in consumption it is between consumed
products and utility. Mathematical precision is essential when formulating
economic models. We therefore need to think very precisely about the eco-
nomic actions that we are trying to model, and the most commonly modeled
action is a transformation. We will start with linear transformations since
they are easier, but most micro theory is based on nonlinear transformations
such as the decreasing utility that occurs when you eat too many donuts.
All economic activities involve a transformation from input to output space
or from product to utility space, such as eating donuts.

In our initial case of production, the economic transformation goes from
an “m-dimensional” space of inputs (b), to “n-dimensional” space of outputs
(x) and then to the scalar space of profit. In other words the production
process being modeled takes a set of m inputs, say land, labor, and capital,
and transforms them into n outputs, say corn, potatoes and milk, which are
all sold for a common commodity, money. There are two transformations
in this model of production. From inputs to outputs and from outputs to
farm return. In addition we assume that the farmer is trying to maximize
his return and will be constrained by some inputs.

These simple transformations characterize the way in which most of the
world’s population get their living. It is very important to be able to vi-
sualize the economic processes that underlie the linear algebra definitions,
and be able to go back and forth between the algebraic definitions and the
economic interpretations.

In the Yolo problem, the production transformation (mapping) is from
land, water, labor, and contract constraints (m = 4) to alfalfa, wheat, corn,
and tomatoes (n = 4) and the objective function transformation (mapping)
is from 4-space to the 1-space of a single total farm return.

For example, the mapping in ”Classroom space” is:

[
height width length

]



0
6
12


 = scalar

The coordinates in 3-space locate a particular point on the floor that is 6 ft
from one wall and 12 ft from another.
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2.3.1 Other Examples of Production Transformations

Ford Car Production (Fixed Proportion):

[
Capital Labor Steel Energy

]
︸ ︷︷ ︸

1×4




aCT aCE

aLT aLE

aST aSE

aET aEE




︸ ︷︷ ︸
4×2

= [Truck Mustang]︸ ︷︷ ︸
1×2

Candy Bar Production (Secret Recipe):

[
Sugar Chocolate Gum CornSyrup

]
︸ ︷︷ ︸

1×4




M1

M2

M3

M4




︸ ︷︷ ︸
4×1

= [Milky Way Bar]︸ ︷︷ ︸
1×1

2.4 Linear Algebra Definitions Used in Linear Pro-
gramming

Linear Transformation: A linear transformation T from n-space to m-
space is a correspondence on the space En which maps each vector x in
En into a vector T (x) in m-space, Em. Transformations are performed by
matrices or vectors as in the previous car or candy examples.

Note that scalar multiplications can be carried through the linear trans-
formation. This means that scalar multiplications can be factored out of the
transformation.

Example: Given the vectors x1, x2, in En, and scalars λ1, λ2, the trans-
formation T (·) can be written as:

T (λ1x1 + λ2x2) = λ1T (x1) + λ2T (x2)

Linear Dependence: If a vector ai in an m × n matrix A can be
expressed as a linear combination of the other vectors then it is linearly
dependent (Informal, intuitive definition).

Math definition: Given a set of n×1 vectors a1, . . . , am in En space where
m < n, the vectors ai are linearly dependent if there exist λi(i = 1, . . . , m)
such that λ1a1 + λ2a2 + . . . + λmam = 0 where not all the λi = 0.

It is sometimes easier to see the opposite case of linear independence.
The vectors are linearly independent if the only set of values for λi for which
the linear transformation can be made to equal zero is when all λi = 0.
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Example of Linear Dependence: Set λ1 = 1. Since the definition of
linear dependence is that λ1a1 + λ2a2 + . . . + λmam = 0, we know λ2a2 +
. . . + λmam = −a1. Since a1 6= 0, thus some λi(i = 2, . . . , m) must also be
non-zero.

Rank: The rank of a matrix is equal to the number of linearly indepen-
dent vectors in the matrix.

m m×m m× (n−m)

m n−m
n

Notes:

1. The number of linearly independent vectors cannot exceed m if m < n.

2. The number of linearly independent vectors cannot exceed smaller of
the two dimensions, because rank is equal to the dimension of the
largest invertible matrix. Remembering that matrices are only invert-
ible if they are of equal dimensions (square)

3. The rank of A is denoted r(A)

2.5 Existence of Solutions

Solution: Given a system of constraints Ax = b, the vector x̃, is a solution
to this system if x̃ satisfies the constraints. We want to find the unique set
of that optimizes the objective function value.

Note:

1. That the values of a solution vector x are the “weights” in a linear
transformation.

2. That since any set of values for x that satisfy the constraints is a
solution, there is often a large number of potential feasible solutions,
and the problem is to find the best one.
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2.6 A Homogenous System

Homogeneous: A system is homogenous if all the values for the right hand
side are zero (Ax = 0). In other words, b is defined as zero. Homogenous
systems are often used as they are simpler to represent and manipulate. The
trivial solution of x = 0 always exists.

Non-homogenous systems can always be converted to homogenous sys-
tems by matrix augmentation. We can convert Ax = b to Âx̂ = 0, where

Â = Ab the “augmented matrix” and x̂ =
[

x
−1

]
, the augmented vector.

Example:

A =
[

a11 a12

a21 a22

]
b =

[
b1

b2

]
x =

[
x1

x2

]

In the example above Ax = b, alternatively we can write the same equations
in the form of Ax − b = 0. Note, we are assuming that the vector b is not
linearly independent of A.

[
a11 a12 b1

a21 a22 b2

]


x1

x2

−1


 =

[
0
0

]

or, by redefining the matrices and vectors, we get the equivalent: Âx̂ = [0].

2.6.1 Case 1: No Solution to the System Exists

No solutions exist to Ax = b if the rank of A, r(A), is less than the rank of
the matrix Â, where Â is defined as the augmented matrix, [Ab]. Here we
compare the rank for the augmented and unaugmented matrices.

The rank condition where r(Â) > r(A) means that b is linearly indepen-
dent of A, and therefore there no solutions exist, except the trivial solution.

Note that b must be linearly independent of all the vectors in A if aug-
menting A by b increases the rank of Â over the rank of A.

From the definition of a solution as a linear transformation, the linear
independence of b from every vector in A means that no solutions can exist.
In other words, the only set of weights (or allocations) of x̂ that can make
Âx̂ = 0 is the trivial solution when every value in x̂ = 0.
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2.6.2 Case 2: The System has an Infinite Number of Solu-
tions

For the system Ax = b, where A is an m×n matrix, and x is an n×1 vector.
If r(A) < n then there exist an infinite number of non-trivial solutions.

For simplicity, assume that the rank of A is = m, (n > m) and arrange
the linearly independent columns first. The partitioned matrix dimensions
are shown:

m m×m m× (n−m)

m n−m
n

Starting with the system Ax = b, where x is n× 1, b is m× 1, and A is
m× n, A and x can be partitioned as follows:

A → [A1
...A2] and x →




x1

· · ·
x2




We can express the system Ax = b as:

[A1
...A2]




x1

· · ·
x2


 = b or (alternatively) A1x1 + A2x2 = b

But, by definition, if r(A) = m, and A1 has m linearly independent
vectors, then A1 is “nonsingular” and A−1

1 exists. Rearranging and using
the inverse yields:

x1 = A−1
1 (b−A2x2)

Multiplying it out yields:

x1
solution

(unknowns)

= A−1
1 b

known

− A−1
1 A2x2

known or zero
(chosen)

Note that the value of x1 depends on x2, which can have an infinite
number of values. This common situation leaves us with an infinite number
of feasible solutions to search over for the optimal feasible solution. The
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solution approach is to make this intractable infinite problem tractable, by
restricting our search to the finite number of feasible solutions that make up
the basic solutions defined over the page.

2.6.3 Case 3: A Unique Solution Exists to the System

The system Ax = b has a unique solution if these two conditions hold:

1. r(A) = r(Ab)
That is, the RHS augmented matrix has the same rank as A; and

2. The matrix A is square and of full rank. That is, A = m × m and
r(A) = m

2.6.4 Summary

Solutions to the set of equations Ax = b depend on which of the following
conditions hold:

r(A) < r(Ab) No Solution
r(A) < dim(x) Infinite Number of Solutions
r(A) = dim(x) and A is of full rank Unique Solution

2.7 Basic Solutions

Basic Solutions Given Ax = b, A is m×n, and r(A) = m, a basic solution
to the system is when (n − m) predetermined values of x (eg, x2) are set
equal to zero.

Using the previous example, set the values in x2 = 0. The basic solution
is x1 = A−1

1 b.
For convenience, I am now changing the set notation to the standard

form for this book and define A1 as B and A2 as D. We can now write the
system as xB = B−1b where x1 is denoted xB and x2 (set = 0) is denoted
xD.

Note that since B is m × m and non-singular, the inverse B−1 exists.
Also note that since there are (n − m) non-basis vectors, there is a large,
but finite, number of alternative basic solutions.

2.7.1 A Notation Change

Basic Feasible Solution (BFS): A basic feasible solution x has non-
negative values for the basic solution vectors and the x values in the basis
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are all non-negative, i.e.:

Basic Solutions x = B−1b
Feasible x ≥ 0

Convex Sets: A set {X} is convex if for any points x1 and x2 ∈ {X},
the line segment x1 x2 is also ∈ {X} (See Figure 2.2 for a convex set and
Figure 2.3 for a non-convex set). Put another way, the set {X} is convex if
there exist x1,x2 ∈ {X}, such that the linear combination λx1 +(1−λ)x2 ∈
{X}, for 0 ≤ λ ≤ 1. This linear combination can be anywhere on the line
between x1 and x2. Note that λx1 + (1 − λ)x2 is, by definition, a convex
linear combination.

X1

X2

Figure 2.2: λ = 0 implies that we are at point x2; λ = 1/2 implies a point
half way between x1 and x2; λ = 1 implies point x1

Extreme Point: The extreme point of a convex set is x if x ∈ {X}, but
there do not exist any other x̄1, x̄2 ∈ {X} such that x = λx̄1 + (1 − λ)x̄2

for 0 < λ < 1(See Figure 2.4). What this says that an extreme point is a
member of the set, but it cannot be expressed as a linear combination of
any other points in the set. Imagine that you are, like Leonardo Di Caprio
or Kate Windslow, standing on the bow of the Titanic— there’s nowhere to
go but down (i.e., off the ship)!
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X1

X2

Figure 2.3: Sets with holes or dents are not convex

Notes:

1. In this definition λ is strictly <, not ≤.

2. Any point that satisfies the definition above is a single point, because
it is in the set, but only at an extreme point.

3. Intuitively, an extreme point of a convex set is part of the convex
set, but cannot be expressed as a linear combination of any other two
points in the convex set.

In a linear system an infinite number of solutions often exist, the objec-
tive function is used to select the maximum or minimum value. However to
reduce the number of values to search for optimal value we use the properties
of the basic feasible solution to reduce the search problem from an infinite
set to one over a finite set of possible optimal values.

The number of extreme points of a set of linear constraints is finite.
Accordingly, if we search the set of basic feasible solutions for the optimal
value of the objective function, we will have found the optimal for the whole
set.

Note that if the constraints are nonlinear, the resulting convex set now
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X1

Figure 2.4: Extreme points are not part of any line inside the set.

Figure 2.5: Basic feasible solutions are the non-negative extreme points.
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has an infinite number of solutions again. To solve for the optimum in this
case we have to use a different approach that is addressed later in the book.

2.8 Slack and Surplus Variables

Slack and surplus variables in a linear program are used to convert the
inequality constraints into equality constraints, thus making the problem
easier to write mathematically and helping the interpretation of the model.
They are some times called “artificial variables.” While you have to un-
derstand the interpretation of these variables, in actual empirical Linear
Programming (LP) models they are usually put in automatically by the
computer algorithm.

The two types of artificial variable correspond to the two types of in-
equality constraint. “Less than or equal to” (≤) constraints are converted
to equality constraints by slack variables, while “greater than or equal to”
(≥) constraints require surplus variables.

Assume that you don’t know whether an inequality constraint is binding,
but you want to express it mathematically as a binding constraint. In this
case, you will have to take up the slack for an input if the constraint is “less
than or equal to” or dispose of the surplus input if the constraint is “greater
than or equal to.”

Example of land as a Slack variable in the Yolo model:
Alfalfa Wheat Corn Tomato Slack Land

Land 1 1 1 1 1 = 600

Notes:

1. Objective function coefficient values for slack(or surplus) activities are
zero.

2. Most LP programs put them in automatically (in GAMS).

3. The slack (or surplus) activities give us an initial basic feasible solution
for the simplex method to use.

4. This initial basic feasible solution is:

(a) Guaranteed basic due to the diagonal constraint matrix
(b) Guaranteed feasible by the non-negativity condition on slack/surplus

variables.
(c) Won’t add to the objective function value as slack and surplus

activities have zero objective function values.
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Surplus variables (for ≥ constraints) have a negative signed coefficient in
the constraint because we want to reduce the surplus above the right hand
side value, and thus reformulate the constraint as an equality.

2.9 Linear Program Objective Function Specifica-
tion — Traditional Normative Approach

Economic Properties of Linear Program Objective Functions:

• Linearity of the objective function in the parameters. Max c′x where
the elements of the vector c are the linear gross margin values.

• Constant Returns to Scale, i.e., cost/unit production is constant.

• Constant output prices (price-taker); no regions, nations or large firms.

Some common examples of objectives are:

• Maximization of profit (Neoclassical Firm objective)

• Minimizing linear deviations from central planning targets

• Minimizing costs in a planned economy

• Minimizing risk of starving next season

The units in the objective function are usually defined by the price units,
for example $ per ton. In the constraint matrix it is essential that there is
consistency between the constraint units and objective function units.

2.9.1 Yolo Farm Example

No costs are specified in the Yolo problem. The objective function param-
eters are “Gross margin/acre.” which are based on primary data and are
equal to total revenue/acre – variable costs/acre.

This simple objective function specification works well until we need to
consider capital investments, or changes in production technology as part of
the problem to be solved. If changes in the amount of input used is part of
the problem to be optimized then the net return per acre will change which
requires a more complicated specification.
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2.10 Specifying Linear Constraints

2.10.1 Types of Constraints

Linear constraints can usually be classified into three broad classes:

1. Resource Constraints
In most linear models of production or distribution, resource con-
straints are intuitive. They usually take the form of a set of “m”
summation constraints over the “n” activities. This form assumes
that there are n possible production activities and m possible fixed
resources used by the activities. The fixed resources are available in
quantities b1. . . bm.

The standard specification of this form is:

max c′x
subject to Ax ≤ b, x ≥ 0

The matrix A has individual elements, which are the input requirement
coefficients for the production activities.

2. Bounds
Where there are institutional limits on the activity levels, or because
of bounds on the range of the linearity assumption, we may wish to
bound the individual activity values. Bounds can be specified using
a single row constraint for each bounded activity. The general “less
than or equal to” form of constraint can be used in the following way:
Ix ≤ b where the values for the b vector components bi are the levels
of the upper or lower bounds. Upper bounds have positive values for
bi . Lower bounds have negative values on both bi and a corresponding
−1 value in the identity matrix.

3. Linkage Constraints
This type of constraint links two or more activities in a prespecified
manner. The most common use of linkage constraints is to sum up
total output or input use by activities. This operation is often needed
where the total input use must be held in storage or purchased from
another economic unit. Another common specification is an inventory
equation that keeps track of commodity levels used, produced and on
hand in the model. The units in the linkage constraint row usually
determine the coefficients corresponding to each activity.

Linkage constraints are best approached systematically:
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(a) Decide on the best units for the constraint row.

(b) Write out the logic of the constraint in words. For example, a
hay inventory row should be specified in tons. If the activities
influencing the row are:

i. Hay grown (acres)
ii. Cattle to be fed (head)
iii. Hay sold (tons)
iv. Hay purchased (tons)

The logical basis for this constraint is — “Hay consumed by cows
plus the hay sold equals hay grown plus hay purchased.” The
easiest way to think of linkage constraints is to define the “Flows
in” and “Flows out” of the commodity that the constraint defines.
Then decide if the problem requires that the flows in are greater
than, less than, or equal to the flows out.

(c) Although linkage constraints are usually equalities, LP problems
solve more easily if the constraints are specified as inequalities.
The trick is to specify the signs of the coefficients so that the con-
straint is driven to hold as an equality by the objective function.
For example if a constraint is set as a “greater than” inequality
that requires a basic ration for animal production but allows a
greater amount of food to be fed. An optimizing model will al-
ways constrain the ration to the basic level if the food input is
costly or constrained.
Example 1: Hay allocation. The level of the four hay activities
above, growing, feeding, selling, buying are defined by x1, x2,
x3 and x4. The different impacts of the activities on the hay
constraint are defined by the aij coefficients: a41, a42, a43, a44.

Objective Row −c1 c2 c3 −c4

Linkage Row −a41 a42 1 −1 ≤ 0

The row is measured in units of the variable input, tons. The
linkage row above allows the possibility that more hay can be
purchased or grown than is needed for feeding (x2) or selling (x3).
However, since the extra units have a cost associated with them
the objective function will be reduced by the “slack” activities
and hence an optimizing model will not purchase more input
than is needed. The linkage row does require that the units of
hay required for feeding or selling, (x2 + x3) are summed and
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that this sum is less than or equal to x1 + x4. In short, you can
have too much, but you cannot have too little.

(d) If the problem solution is infeasible or unbounded, check the signs
in the constraint.

(e) Check the operation of the linkage constraint by hand calculations
on a representative constraint at the optimal solution values.

(f) Inventory stocks can be incorporated most simply by right hand
side values (see Example 2). An alternative approach is to specify
a separate column for the inventory stock activity, which may
itself be constrained by upper or lower bounds (see Example 3).
This approach is required if the stock is priced as a separate
activity in the objective function.
Example 2: A Begining Inventory A stock of 50 units of x4 is
available at the start of the problem.

Objective Row −c1 c2 c3 −c4

Linkage Row −a41 a42 1 −1 ≤ 50

The resulting constraint in the optimal solution will have the form
−x1a41 + x2a42 + x3a43 − x4 ≤ 50.
The interpretation is that the model can satisfy the requirements
of activities x2 and x3 by using some of the unpriced 50 units on
hand, or they can grow hay in activity x1 for a cost c1 or buy hay
for a price c4 through activity x4.
Example 3: An Ending Inventory The problem starts with no
initial stocks of hay, but is required to have 100 units in stock
at the optimal solution. We now specify activity x5 as the stock
of hay. Note that the minimum stock constraint is defined as a
double negative to simplify its specification in Gams.

Objective Row −c1 c2 c3 −c4 c5

Linkage Row −a41 a42 1 −1 1 ≤ 0
Minimum Stock Row −1 ≤ −100

2.11 Linear Transportation Problems

Linear optimization is particularly good at solving problems that minimize
the cost of transporting a commodity from defined sources to destinations.
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If there are n sources (numbered by i = 1 . . . n) and m destinations (num-
bered by j = 1 . . .m), then there are n×m possible ways to transport the
commodity.

The activity (the amount shipped) is therefore defined as xij and has an
associated cost of transport of cij .
The objective function is therefore:

min z =
∑

∀i

∑

∀j
cijxij

Demand at destinations: The transport problem is constrained by
a set of minimum demand quantities at each destination. If the quantity
demanded at destination j is defined as bj , the demand constraint is:

∑

∀i
xij ≥ bj

It says “the sum of the amounts that arrive from all sources must be greater
or equal to the amount demanded at destination j.”

Source “Supply” Constraints: The total amount shipped out of any
supply source cannot exceed its capacity. Given a maximum capacity of ai

at source i, the supply constraint is:
∑

∀j
xij ≤ ai

It says: “The amount shipped from source i to all destinations must be less
than or equal to the amount available at source i.”

The complete transportation problem for n sources (i = 1 . . . n) and m
destinations (j = 1 . . . m) is:

Minimize Total Cost z =
∑

∀i

∑

∀j
cijxij

subject to:
∑

∀j
xij ≤ ai and

∑

∀i
xij ≥ bj

Demand Shortage Costs and Transportation Cost: Often prob-
lems can be written more realistically by redefining the demand constraints
as not having to hold exactly, but to incur Shortage Costs if they are not
met. To influence the optimal solution, the outage costs of not having
enough product must exceed the transportation and supply costs.
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Outage activities are included in the left-hand side of the demand con-
straints: ∑

∀i
xij + outj ≥ bj

Given an shortage cost of coutj , the transportation model objective func-
tion is now: ∑

∀i

∑

∀j
cijxij +

∑

∀j
coutjoutj

The model now finds the optimum pattern of transportation for the
supplies on hand, and calculates the cost minimizing way to spread the
shortage among destinations.

2.12 Readings

Williams “Model Building...” Ch 3, pp 20-47; Ch. 5, pp 63-82.
Hazell & Norton, Ch 2, pp 9-31; Ch 3, pp 32-53.



Chapter 3

Solving Linear Models

3.1 Solution Sets

A linear equality constraint defines a line in two space, a plane if it is in
three space, and a hyperplane if the constraint is in n dimensions. It follows
that a linear constraint (inequality) in “n space” divides the space into two
half spaces. Therefore the set of values that satisfy several linear constraints
must be common to (or contained in) the intersection of several half-spaces.
Fortunately it turns out that the intersection of linear half-spaces is a convex
set. Therefore the set of possible solutions, which can satisfy several linear
constraints at the same time, is a convex set. This convex set is known as
the feasible solution set for the linear inequality constraints, since any point
in this set can satisfy all the constraints. We use the properties of convex
sets to search over the large set of possible solutions in an efficient way for
the optimal solution that maximizes some particular objective.

Example: The following set of inequality constraints that define the
solution set:

x1 ≤ 5
3x1 + 5x2 ≤ 30
x1 and x2 ≥ 0

We can show these inequality constraints graphically in x1x2 space de-
picted in Figure 3.1. The intersection of the two half-spaces is the feasible
solution space. Note that the feasible solution set is a convex set with four
extreme points at each corner of the set.

29



30 CHAPTER 3. SOLVING LINEAR MODELS

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

X1

X2

3X1 + 5X2 � 30

X1 � 5

Feasible Solution Space

Figure 3.1: Feasible Solution Space

3.1.1 Extreme Points and Basic Solutions

Extreme Point: Given a system Ax = b (x ≥ 0) where A is m × n, and
r(A) = m: if K is the convex set of all solutions to the system, that is, the
set of possible n × 1 vectors x that satisfy the system and if x is a basic
solution to the system, then a vector x is an extreme point of K.

Basic Solution: Defined as a solution where all the basic variables are
non-zero, all other non-basic variables are zero.

Corollary: If a feasible solution exists then there exist a finite number of
potentially optimal solutions.

Given that we can be sure that our optimal solution is among the basic
feasible solutions we can now concentrate the search for optimal solutions
among the finite set of basic feasible solutions. Note that for the feasible
solution set, the number of elements at each extreme point equals the num-
ber of binding constraints, and also equals the number of non-zero basis
activities.
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3.2 The Fundamental Theorem of Linear Program-
ming

Given a linear programming problem in the usual matrix algebra form and
A is m× n, and r(A) = m:

max c′x
subject to Ax ≤ b, x ≥ 0

The Theorem can be summarized by stating that:

1. If a feasible solution exists to the problem, a basic feasible solution to
the problem also exists.

2. If an optimal feasible solution exists, then an optimal basic feasible
solution to the problem also exists.

In other words, if there are multiple optimal solutions to an LP problem,
then among all the optimal solutions at least one of them is an extreme
point, and thus a basic solution. For a full mathematical proof see Fang and
Puthenpura (1993).

Therefore all we have to do is check which of the basic feasible solu-
tions maximizes the objective function to know that we have checked all the
possible candidates for the optimal basic feasible solution.

3.3 The Simplex Algorithm

An algorithm is a set of systematic instructions to the computer that en-
ables us to program it to perform a given task. The Simplex Algorithm is
one of the oldest, but still the best algorithm for most problems of linear
optimization. Its operation can be summarized as:

1. Change the basis of the problem, and hence the solution, by changing
basis vectors.

2. Use the objective function value for a systematic choice of basis vectors
that always improve the objective function.

Since the algorithm is driven by the effect of a change of basis on the ob-
jective function, to understand its operation we need to analyze the algebra
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and economics of a change of basis for the following familiar LP problem:

maxΠ = c′x
subject to: Ax = b,

x ≥ 0, dim(A) = m× n, r(A) = m

Partition A into basis and non-basis matrices denoted respectively B

and D. The resulting partition is A ≡ [B
... D] where B is the m×m basis

matrix and D is the m× (n−m) non-basis matrix.
When partitioned, x and c′ become:

x =




xB

· · ·
xD


 and c′ = [c′B

... c′D]

Therefore, the LP problem after partition becomes:

max[c′B
... c′D]




xB

· · ·
xD


 subject to [B

... D]




xB

· · ·
xD


 ≤ b

Multiplying out the partitioned matrices results in:

maxΠ = c′BxB + c′DxD

subject to: BxB + DxD ≤ b,

xB ≥ 0, xD ≥ 0

An optimal basic feasible solution (BFS) has the elements of xB, that are
all non-zero (assuming non-degenerate solutions, a special case that is ex-
plained in later chapters), and all the xD elements are zero. The constraints
for a basic feasible solution become:

BxB + D[0] = b or, more concisely, BxB = b

Since B−1 exists by definition of a basis (m ×m, with m linearly inde-
pendent rows), a basic feasible solution to the system is:

xB = B−1b

However the point of this analysis is to find the effect of a change of
the basic solution on the value of the objective function. Accordingly, the
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partitioned x vector is used to write the objective function in terms of basis
and non-basis variables.

The partitioned objective function is Π = c′BxB +c′DxD and substituting

xB = B−1b

in the solution above:
Π = c′BB−1b + c′DxD

For basic solutions where xD = 0, the objective function is Π = c′BB−1b.
What happens to the objective function value (z) when we consider

introducing one of the xD non-basis vectors, say xj , into the basis? The
analogy is the “In group” and “Out group” in high schools where teenage
popularity and being cool is very important. One way in which one can
judge, and be judged, as to what group you are in is with whom you eat
lunch. Assume for mathematical reasons that the lunch bench has a finite
dimension, (the rank of the basis matrix) and the number of people who can
sit on the bench is limited. Since teenage popularity is fickle, it is quite likely
that individuals (vectors) move in and out of the “In group” over time. The
point is that if a new individual is popular enough to be admitted to the
“In group,” someone will have to leave the bench (the basis) and the other
members of the group will have to rearrange their seating on the bench with
the arrival of the new entrant.

To duplicate this process mathematically, first write out a solution to
the partitioned constraints:

BxB + DxD = b then subtract the non-basis values

BxB = b−DxD then pre-multiply by B−1

and get: xB = B−1b−B−1DxD

Now we substitute this result into the objective function to see the effect
of the introduction of a non-basis activity into the basis. This changes the
objective function value. Since Π = c′BxB + c′DxD substituting in for xB

from above yields:

Π = c′B(B−1b−B−1DxD) + c′DxD

Collecting the terms multiplied by xD we can now factor out xD to get:

Π = c′BB−1b + (c′D − c′BB−1D)xD

or . . .Π2 = Πoriginal + (cj − zj)xD
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Where cj is the vector of revenues from the new activity and zj is the
vector of the cost of the needed adjustments in the xB basis values to ac-
commodate the new xj vector. Note that difference between the revenues
and opportunity cost cj − zj is termed the reduced cost and defined as rj .

Note that c′D−c′BB−1D is a vector representing net values of xD’s (non-
basis vectors). In the basic equation for Π they’re multiplied by vector xD

of zeros. However if one of the xD activities is set to non-zero value, that is,
it is brought into the basis, the objective function will be changed by this
amount.

The net change in objective function value from moving a new vector in
is:

c′D︸︷︷︸ – c′BB−1D︸ ︷︷ ︸
Revenue contributed by a

new activity from xD

Change in the xD values
forced to satisfy the con-
straints defined as: yj times
the unit revenue lost

In other words . . .
Marginal new revenue – Marginal opportunity cost

That is c′BB−1D is the cost of moving the old basis values to fit a unit of
the xD vector. In other words, c′D− c′BB−1D is the marginal revenue minus
the marginal opportunity cost of vector xD, the incoming non-basic vector.

3.3.1 The Entering Activity Rule

If you want to maximize c′x, you select the change of basis that maximizes
the difference between revenue and opportunity cost of the new vector. That
is, for a maximization problem we select among those vectors that have:

c′D > c′BB−1D or c′D − c′BB−1D > 0 or MR−MC > 0

Using this criterion we only change the basis if we improve the objective
function.

The Dual price or “shadow value” is defined as:

λ′ ≡ c′BB−1

Note that λ is the “marginal” associated with the constraint rows in the
Gams printout. Substituting the expression for λ above into the equation
defines the term zj where:

z = [c′BB−1D] = λ′D
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The reduced cost vector is defined as:

r = c′ − z′ ≡ (c′D − c′BB−1D)

For a maximization problem, the algorithm rule is:

• If there are any rj greater than zero (rj > 0), add the vector with the
highest rj .

• If all rj ≤ 0, you’re at optimal solution.

In a minimization problem, the rule is to bring in the x vector with lowest
rj . If all rj ≥ 0, the minimization problem is at the optimum.

3.3.2 Intuition

• rj is the net benefit of an activity entering the basis and is the “marginal”
on the variables in the GAMS printouts.1

• cj is the “benefit” of activity j (the incoming activity) to the objective
function.

• zj is the opportunity cost of moving the current basis values to ac-
commodate incoming unit of xj , and is equal to the lost revenues from
current basis activities. The row vector z with elements zj is defined
as:

z = c′BB−1D = λ′D

c′B are returns from x’s in basis.

B−1D are the input release quantities for x’s.

λ′ are shadow values of resources (b)

Alternatively the same zj value can be expressed in terms of the yj

vector. The new vector yj is a vector that is a function of the jth non basis
activity dj , and yj is defined as B−1dj :

1See the Rock Music example later in this chapter.
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z = c′B B−1dj

↑ ↑
value (revenue) of a unit of

each of those xi’s
yj = The reduction in the out-
put of the current basis activ-
ities xi needed to release re-
sources for 1 unit of the enter-
ing xj .

Π = value of objective function

Π = c′x = c′BxB + c′BxD

therefore can also be written as:

Π = c′BB−1b = c′BxB

3.4 An Outline of the Simplex Method

The Simplex algorithm optimizes using four critical pieces of information.

1. The Reduced costs of the non-basis activities, defined in the vector r:

[cBB−1D︸ ︷︷ ︸
cost

− c′D︸︷︷︸
revenue

] = z︸︷︷︸
cost

− c︸︷︷︸
revenue

= r. (3.1)

Note that the signs of the rj elements of r are reversed here — always
check the LP package for the definition of rj .

2. The value of the current Objective function

cBB−1b = c′BxB = Π (3.2)

Recall Π = c′x = c′BxB + c′DxD, but c′DxD = 0 for a basic solution,
since xD is defined to equal zero for a basic solution.

3. The values of a new parameter yj , a vector that is calculated for all
non-basis vectors that might enter the basis at the next iteration.

B−1D = [y1, y2, . . . , yn−m] (3.3)

Note that B−1D is an m × (n − m) matrix, and that each vector yj

is an m × 1 column vector of scalar resource requirements yij . The
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scalar value yij is the amount of resource i used in the current basis,
and needed by a unit of xj if it enters the basis. That is, the amount
that an activity level xi in the basis must “move over” and transfer to
the activity xj to accommodate xj entering the basis.

4. The value of the current basis variables xB is given as:

B−1b = xB (3.4)

An overview of the simplex method builds on the four matrix expressions
derived above.

Step I First Iteration. Your GAMS program adds slack or surplus variables
to convert all the inequality constraints to equalities. The slacks have
two important characteristics:

1. Zero values in the objective function coefficient row (c).

2. A constraint matrix which is an identity matrix.

Thus, an initial basis of all slack and surplus variables is always:

1. Of full rank

2. Feasible

3. Zero valued objective function and, therefore, zero opportunity
costs zj for alternative activities.

Step II For each xj not in the basis, calculate the reduced cost rj = cj − zj ,
which is the net benefit of xj entering the basis (For the first iteration
rj = cj). For a maximization problem, select the xj with maximum
rj > 0 to enter the basis. If any rj > 0, the problem is not optimal.
(For a minimization problem, select the minimum rj < 0 to enter the
basis).

Step III The yj vector is used to select the activity that leaves the basis. yj is
an m× 1 vector of values that show the technical rate of substitution
between the basis activities xBi and the incoming vector xk chosen
in Step II. From equation 3.3 we see that B−1D yields (n − m) yj

vectors, each with m elements. If we pick a non-basis activity and
corresponding vector from the matrix D, say dk, to enter the basis,
the corresponding yk vector will be:

yk = B−1dk = B−1ak (3.5)
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Note that dk is the kth vector in A thus we can perform the above
matrix operation. Using 3.5 we can also write ak — the input re-
quirements for the incoming vector — as a function of yk:

Since B−1ak = yk, pre-multiplying by B yields ak = Byk (3.6)

But since B is the basis submatrix of A,

B = [a1, a2, . . . , am] (3.7)

Thus from 3.7the potential incoming vector ak, selected in Step II can
be expressed as a linear combination of the basis vectors. Substituting
3.7 back into 3.6 yields:

ak = a1y1k + a2y2k + . . . + amymk (3.8)

Now we use the first algebraic trick. Multiply each element in 3.8 by
an arbitrary nonzero scalar ε:

εak = a1εy1k + a2εy2k + . . . + amεymk (3.9)

Expanding the basic feasible solution BxB = b using 3.7 for B results
in:

a1x1 + a2x2 + . . . + amxm = b (3.10)

We now introduce −εak and εak into the feasible basis in equation
3.10. Note that if ε ≡ 0, no basis change occurs.

a1x1 + a2x2 + . . . + amxm − εak + εak = b (3.11)

Now, we want to drive a single activity to zero. First, multiply 3.9 by
−1 and substitute the right hand side of 3.9 for −εak in 3.11 to get:

a1x1 + a2x2 + . . . + amxm + (−a1εy1k − a2εy2k . . .− amεymk) + εak = b
(3.12)

Factor out the a1, . . . , am vectors to get:

a1(x1 − εy1k) + a2(x2 − εy2k) + . . . + am(xm − εymk) + εak = b (3.13)

Note that as the value of the scalar ε is increased, the influence of ak

increases and xi − εyik will be driven to zero for some activity i. This
activity will leave the basis.

Notes:
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1. That by the definition of a basic solution, when an activity is
driven to a zero value it leaves the basis.

2. An m + 1-dimensional object in m-dimensional space is called a
“simplex,” hence the name of this algorithm.

3. In general, all the “old” basic activities change in quantity, but
one activity is driven to zero and exits the basis.

4. The first term to be driven to zero will have the smallest xi/yik,
since xi − εyik = 0 when ε = xi/yik.

From 3.13, we can see two outcomes of changes in the value of ε :

1. If ε = 0 we get the old basis in 3.7

2. If ε is made large, the importance of the new vector ak increases,
but there is a danger that one of the new variable values (xi −
εyik) will be driven to a negative value, which would produce an
infeasible solution.

Question: How do we select the value of ε that will drive one basis
activity level exactly to zero, without driving any others to negative
values (which would make those activities infeasible?)

Answer: Since
xi − εyik = 0 ⇒ ε = xi/yik (3.14)

If the exiting vector is selected as the first basis vector to have its
coefficient driven to zero by the entry of ak in the basis, we will have
a new basis and ensure feasibility — remember this requires that xi is
non-negative.

The criterion is therefore (given yij > 0):

min
{

xBi

yij

}

yij>0

Note that xBi and yij are scalars.

If there are no yij > 0, the problem is unbounded since the trade-offs
between the inputs must be negative. Remember that an unbounded
problem is one where the constraints are not sufficient to prevent the
maximization of the objective function from driving some variables to
very large values.

Why is this? If the resource requirement is negative, a situation that
implies that yij < 0, then adding xj to the basis will free up resources
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necessary for xi but may consume resources necessary for other activ-
ities. If yij < 0 for all i, then adding xj to the basis frees up resources
and doesn’t consume any. This implies you can do it forever, and that
there is such a thing as a free lunch.

Step IV Proceed with these iterations (by returning to Step II) changing the
basis each time until all rj ≤ 0(for a maximizing problem). You now
have the optimal solution XB = B−1b and the optimal objective func-
tion Π = cBxB.

3.5 A Matrix Simplex Solution Example

As an illustration of matrix manipulations involved in solving for solutions of
systems of linear equations, we develop the problem of the music production
firm which can promote bands in four groups xA (Alternative Rock), xC

(Country), xG (Grunge Rock), and xH (Hip Hop).
Assume that the firm has two stocks of input needed to produce a suc-

cessful band, namely promotion AirPlay time (AP) and Recording Studio
time (RS). A successful band will bring profits to the firm via CD sales.
Both these assets are fixed in their maximum availability, max AP = 620,
max RS = 180. In addition, the music firm manager knows how much of
each input is required for each type of band. The technology required for
the music business is therefore represented by Ax ≤ b:

xA xC xG xH

25 32 18 28 ≤ 620
12 14 17 10 ≤ 180

To convert the set of inequality constraints into a set of equality equa-
tions we add two more activities for the slacks on AP and RS, respectively
S1 and S2.

xA xC xG xH S1 S2

25 32 18 28 1 0 = 620
12 14 17 10 0 1 = 180

The manager also knows the marginal net revenue (gross margin) for
each type of CD. Under current market conditions they are:

cA cC cG cH S1 S2

c′ = [3.5 4.2 5.6 4.8 0 0]



3.5. A MATRIX SIMPLEX SOLUTION EXAMPLE 41

The simplex method starts the search for the optimal solution with ba-
sic solution that we know will always be feasible but can be improved. The
initial basic solution is composed of the slack variables for the binding con-
straints. In this example, the initial basic solution is composed of the vectors
S1 and S2. Therefore the initial basis called B1 is:

B1 =
[

1 0
0 1

]

Since the inverse is the same matrix, the basic solution for the basis B2 is:

xB1 = B−1
1 b =

[
1 0
0 1

] [
620
180

]
=

[
620
180

]

Since the gross margin from slack resources is zero the objective function is
also zero. The value for the objective function is:

Π1 = c′B1
xB1 =

[
0.0 0.0

] [
620
180

]
= 0.0

To select the next activity which will enter the basis we have to calculate
the vector of rj (or cj - zj) values for the four music activities that are
currently in the non-basic set xD1 . Since the formula for the vector of
zj values is z = c′B1

B−1
1 d and since cB1 is composed of zero values, the

opportunity cost of using slack inputs to produce CDs is zero. Thus the
value of the vector of rj ’s is equal to cD1 and:

rj1 =




3.5
4.2
5.6
4.8




Since we wish to increase the objective function as fast as possible, we
select the largest rj value, which brings xG (Grunge Rock) into the basis.
To calculate the level at which we can bring in the Grunge rock band and
which slack activity leaves the basis, we now calculate the yj vector for xG:

yxG = B−1
1 dxG =

[
1 0
0 1

] [
18
17

]
=

[
18
17

]

Applying the criteria for the exiting activity also sets the level at which
the new activity comes into the basis:

min
{

xBi

yij

}

yij>0

= min
{

620
18

,
180
17

}
= min {34.44, 10.58}
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Accordingly, the Grunge rock comes in at a level of 10.58 units which
drives the slack on Recording Studio time to zero and out of the basis. The
new basis B2 is composed of S1 and xG activities and is:

B2 =
[

1 18
0 17

]
and B−1

2 =
[

1 −18
17

0 1
17

]

The new solution for the basic activities is:

xB2 = B−1
2 b =

[
1 −18

17
0 1

17

] [
620
180

]
=

[
429.41
10.588

]

The new value for the objective function is:

Π2 = c′B2
xB2 =

[
0.0 5.60

] [
429.41
10.588

]
= 59.29

This level of return is clearly better than the initial solution that did
not use the resources at all, but is it the best use that we can make of the
limited studio resources?

With the new basis there is a new set of opportunity costs for the re-
sources. Studio space is fully used on the Grunge band under the current
allocation, but AirPlay time still has a lot of slack. The new set of rj values
are r = c′D2

− z′D2
= c′D2

− c′B2
B−1

2 D2

r = c′D2
−[

0.0 5.60
] [

1 −18
17

0 1
17

] [
25 32 28
12 14 10

]
=

[ −0.45 −0.41 1.51
]

Using the maximum rj rule, the only music activity for which the marginal
contribution to the objective function exceeds that of the Grunge band is
xH (Hiphop). Therefore xH comes into the basis. The new yj values are:

yxH = B−1
2 dxH =

[
1 −18

17
0 1

17

] [
28
10

]
=

[
17.412
0.588

]

Applying the criteria for the exiting activity also sets the level at which
the new activity comes into the basis.

min
{

xBi

yij

}

yij>0

= min
{

429.41
17.412

,
10.58
0.588

}
= min {24.66, 17.99}

This says that the Grunge band should give up their studio time to the
Hiphop band, and AirPlay time will still be slack. The next (third) basis
has S1 and xH and is:

B3 =
[

1 28
0 10

]
and B−1

3 =
[

1 −2.8
0 0.1

]
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The new solution for the basic activities is:

xB3 = B−1
3 b =

[
1 −2.8
0 0.1

] [
620
180

]
=

[
116.0
18.0

]

The new value for the objective function is:

Π3 = c′B3
xB3 =

[
0.0 4.80

] [
116
18.0

]
= 86.4

Clearly Hiphop is an improvement over the Grunge bands.
The rj values for the new basis B3 are as follows:

r = c′D3
− z′D3

= c′D3
− c′B3

B−1
3 D3

r = c′D3
−[

0.0 4.80
] [

1 −2.8
0 0.1

] [
25 32 18
12 14 17

]
=

[ −2.26 −2.52 −2.56
]

Since all the rj values for the third basis are negative, this tells us that we
are at the optimum solution with the Hiphop band using all the Recording
Studio time and AirPlay time is in surplus. Note that the LP problem does
not solve directly for the optimal Hiphop production since Grunge music
made a larger gross margin per CD. We found that Hiphop produced the
greatest value per unit of studio time only after we knew studio space was
the limiting resource, and had a shadow value.

This problem is specified and solved in Gams on the class web-
page. Check the format of the Gams set-up in matrix form. Note that every
number on the Gams output has been, or can be, calculated in the matrix
operations by hand. Remember that the “Duals” or “Marginals” on the
resource constraints are calculated above in the rj equation as λ = c′B3

B−1
3 .

Check that the matrix calculations agree relatively closely with the Gams
printout.
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Chapter 4

The Dual Problem

4.1 Primal and Dual Objective Functions

The problem of minimizing the cost of inputs subject to constraints on a
minimum output level is equivalent to the problem of maximizing profit
subject to production technology and constraints on the total input avail-
able. Thus every optimization problem can be posed in its Primal or Dual
form. For every Primal problem there exists a Dual problem which has the
identical optimal solution. So far in this course we have only dealt with the
Primal form of the problem since its intuitive explanation is easier. The
standard form of the twin Primal and Dual problems is written as follows:

Primal Dual
max c′x minλ′b

s.t. Ax ≤ b s.t. A′λ ≥ c
x ≥ 0 λ ≥ 0

where x is a n × 1 vector of Primal variables and λ is an m × 1 vector of
Dual variables.

The Primal objective functions asks the maximum value of a firm’s out-
put while the Dual objective function asks the minimum acceptable price
that one can pay for the firm’s assets.

The Dual specification of a problem is particularly useful when:

1. When the Dual specification is simpler to solve than the Primal spec-
ification.

2. When you know production costs but not production technology.

45
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4.2 The Economic Meaning of the Dual

The Dual variables λi are elements in the vector of imputed marginal values
of the resources bi, given that these resources are in short supply (or “bind-
ing”) with respect to the objective function. Equivalent intuitive interpreta-
tions are the opportunity costs of not having the last unit of resource, how
much you’d pay for one more unit of the resource bi, and/or the marginal
effect on the objective function of a small change in resource availability.

λi =
∂(obj)

∂bi
≥ 0

If the constraint isn’t binding, λi is always equal to zero by the Kuhn-
Tucker complementary slackness conditions (the Kuhn-Tucker conditions
can be found in most economic optimization texts or specifically Hazell and
Norton (1986)Paris page 140).

4.2.1 Dual Objective function

The Dual objective function λ′b is equal to the sum of the imputed values of
the total resource stock of the firm. It is the sum of money that you would
have to offer a firm owner for them to agree to a buy-out. For example, what
would you pay for the Nike corporation ? Nike owns very few factories, but
develops and markets a wide and profitable range of shoes, mainly on the
strength of their trademark and sports celebrity advertising. Clearly, the
valuation of the company has to be based on these contracts rather than the
physical plant used in shoe manufacturing.

4.3 Dual Constraints

The Dual constraints A′λ ≥ c can be interpreted as defining the set of prices
λ for the fixed resources or assets (b) of the firm that would yield at least an
equivalent return to the owner as producing a vector of products (x) from
these resources, which can be sold for prices (c) . The Dual constraint is a
“greater than or equal to” because you can pay too much for a productive
input, but you cannot pay too little. Market forces ensure that input prices
reflect the value of the input in the final, saleable product.

These economic facts are reflected in the matrix algebra development.
Post-multiplying the transpose of the technical input requirement matrix
A by the Dual prices λ results in an m × 1 vector of marginal opportunity
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costs for each of the n potential production activities. For example, A′λ ≥ c,
where A′λ = vector of marginal opportunity costs of production.

For a single production activity xi, its opportunity cost of production
for a vector of Dual prices λ is

a′iλ = (column i of A)′(λ vector) = (a1i . . . ami)




λ1
...

λm




Where:

a′iλ is the imputed cost of the last unit of xi produced or the cost of pro-
ducing a unit of xi if I have to pay λ for resources b.

(a1i . . . ami) are the coefficients on resources required for one unit of xi

production.



λ1

...
λm


 is the marginal imputed value per unit of the resources

used to produce xi.

The constraint A′λ ≥ c for the production problem says that the Marginal
Opportunity cost of producing a different vector of x must be greater than
or equal to the marginal revenue (c) for each of the x actually in production.
The profit-maximizing owner actually produces where the opportunity cost
is equal to the firm value of λ′b.

4.3.1 Music Production Example

In Section 3.5, we found that the optimal solution resulted in HipHop. The
resources used in this production can be calculated from the coefficients
for A′λ previously derived and measured against the marginal revenue on
page 40.1 Let’s check this result again, this time from the Dual perspective.

HipHop production:

CostHipHop = CostAirP lay∗TimeAirP lay+CostRecordingStudio∗TimeRecordingStudio

= 28 ∗ 0.0 + 10 ∗ 0.48 = $4.80

This is equal to the marginal revenue of $4.80 for HipHop and therefore
Marginal Opportunity Cost = Marginal Revenue.

1For the values of A, recall page 40. For the values of λ = c′B3B−1
3 , recall page 43.
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Alternative production:

CostAlternative = CostAirP lay∗TimeAirP lay+CostRecordingStudio∗TimeRecordingStudio

= 25 ∗ 0.0 + 12 ∗ 0.48 = $5.76

Since the marginal revenue from an Alternative CD is $3.50, for production
of Alternative CDs, the marginal opportunity cost exceeds the marginal
revenue and Alternative CDs are not produced.

4.4 Showing the Primal/Dual Linkage

We want to show that the Primal optimality conditions imply that the Dual
constraints must hold.

4.4.1 Primal Problem

max c′x
subject to: Ax ≤ b, x ≥ 0, dim(A) = m× n, r(A) = m

(4.1)

Suppose there exists a basic feasible solution x′ = [xB
... 0] with a corre-

sponding partition of A into the basis matrix B and non-basis matrix D. It
follows that:

xB = B−1b (4.2)

The reduced cost vector r′ equals:

r′ = c′D − c′BB−1D (4.3)

If the xB solution to 4.1 is optimal, then the scalar reduced cost for a
maximization problem ( a minimization problem would have the opposite
sign) is:

rj = c′D − c′BB−1dj ≤ 0 ∀j (4.4)

Or — equivalently — by stacking the dj vectors together to yield the
matrix D, the right side of 4.4 becomes:

c′BB−1D ≥ c′D (4.5)

Defining the 1×m vector of Dual variables

λ′ ≡ c′BB−1 (4.6)

allows us to transform 4.5 into λ′D ≥ cD at the optimum. This also
means that:
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The shadow values of
resources you’d need to bring
xD into the basis, i.e., the
opportunity costs of bringing
activities into the basis,
times the input requirement.

≥ Marginal benefits of bringing
xD into the basis (since cjxj

is the benefit from xj ,
cjxj = 0 when xj = 0 or
when xj is a non-basic
activity).

4.4.2 Dual Problem

The Dual version of the primal problem 4.1 is specified as:

minλ′b
subject to: A′λ ≥ c and λ ≥ 0

(4.7)

We want to show that the Dual solution vector λ defined in 4.6 is both:

Feasible: That is, it satisfies the constraints in 4.7.

Optimal: By showing that the optimal Dual objective function value is
equal to the optimal Primal objective function value.

Feasibility of λ

λ′A = [λ′B
... λ′D] = [c′BB−1B

... c′BB−1D] = [c′B
... c′BB−1D] (4.8)

by substituting the inequality condition for optimality c′BB−1D ≥ c′D in
4.5 we get:

[c′B
... c′BB−1D] ≥ [c′B

... c′D] = c′ (4.9)

combining 4.8 and 4.9:

λ′A ≥ c′ transposing yields A′λ ≥ c (4.10)

Thus, by definition, λ is a feasible solution to the constraints A′λ ≥ c.

Optimality of λ

Using the Dual objective function in 4.7 and our definition of λ in 4.6, By
substituting the definition of xB = B−1b from 4.2, we get:

λ′b = c′BB−1b = c′BxB (4.11)
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Therefore, the Dual Objective Function value = Optimal Primal Objec-
tive Function value and the Dual value λ is optimal by the Strong Duality
Theorem.2

The Point: If the standard Primal LP problem has an optimal basic
feasible solution with a basis B, then the vector λ′ ≡ c′BB−1 is a feasible
and optimal solution for the corresponding Dual problem.

4.5 Numerical Matrix Example — Yolo Model

The A matrix in Yolo is 4× 4. The “*” denotes the basic solution activities
and binding constraints for the optimal solution.

A =

Alfalfa *Wheat Corn *Tomato
*Land 1.0 1.0 1.0 1.0
Water 4.5 2.5 3.5 3.25
Labor 6.0 4.2 5.6 14.0

*Contract 0.0 0.0 0.0 33.25

The optimal solution to Yolo has two binding constraints (Land and
Contract), and two non-zero activities (Wheat and Tomato). We collapse
the A matrix to the basis matrix B by removing the rows and columns that
do not have * and do not constrain the optimal solution. That is, if the rows
are not binding, their coefficients are not in the basis.

The optimal basis matrix is therefore 2× 2 — ignoring the slack Labor
and Water constraints. The optimal basis B is:

B =
[

1 1
0 33.25

]
D =

[
1 1
0 0

]

B−1 =
[

1 −0.03007
0 0.03007

]
b =

[
600
6000

]
cB =

[
160
825

]

Note that for B to be invertible the number of activities in the basis
must equal the number of binding constraints.

Now that we know the optimal basis, let’s find the various algebraic
quantities at the optimum. Finding these quantities in GAMS will be left
as an exercise.

2The Strong Duality Theorem can be informally summarized as λ′b = c′x . . . if and
only if x and λ are optimal solutions to the Primal and Dual problems respectively.
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• Optimal Primal Solution: equation 4.2 is xB = B−1b. Forget about
xD; they are all zeroes.

xB =
[

1 −0.03007
0 0.03007

] [
600
6000

]

=
[

(1)(600) + (−0.03007)(6000)
(0)(600) + (0.03007)(6000)

]
=

[
419.58
180.42

]

• Optimal Dual Solution (GAMS: Marginals on resources): equation 4.6
is λ′ = c′BB−1. λ values are greater than zero for binding constraints
and equal to zero for non-binding constraints.

λ′ = c′BB−1 = [160 825]
[

1 −0.03007
0 0.03007

]

λ′ = {[(160)(1) + (825)(0)] [(160)(−0.03007) + (825)(0.03007)]}
λ′ = [160 20]

• Reduced Cost (GAMS: Marginals on activities): equation 4.4 can be
stated as rj = cj − zj and z′j = c′BB−1D = λ′D, where cj are elements
of the vector cD. rj values are less than zero for non-basic activities
and equal to zero for activities in the basis.

z′j = [160, 20]
[

1 1
0 0

]
= [160 160]

cD = [121, 135]

∴ r′ = [121 135]− [160 160] = [−39 − 25]

• Optimal Primal Objective Function: equation 4.1 is — in terms of B
alone now — Π = c′BxB. Note that optimality implies the maximum
value.

Π = [160 825]
[

419.549
180.451

]
= [67, 127.84 + 148, 872.07] = 216, 000

• Optimal Dual Objective Function: equation 4.7 is λ′b, which will also
be minimized at the optimum.

λ′b = [160 20]
[

600
6000

]
= [96, 000 + 120, 000] = 216, 000
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4.6 Parametric Analysis

Parametric analysis is the main method for obtaining policy results from
optimization models. By changing the output prices or quantities of input
available over a range of values we can generate empirical estimates of De-
rived Demand for inputs to the modeled process (§ 4.6.1) or the Supply
Function from the modeled process (§ 4.6.2).

We may also be concerned with the Sensitivity of the model. Sensitivity
tests the stability of conclusions from the model when we change a constraint
or coefficient value. This is useful when we are uncertain of the exact value
of a parameter and need to know whether knowing the value precisely is
important.

4.6.1 Generating Derived Demand Functions for Inputs

The resource availability vector b is parameterized, that is, changed by small
incremental values over a specified range. At each point the model is opti-
mized and the value of the resource λ is plotted against the amount of the
input b to form the derived demand function. Given the problem:

max c′x
subject to Ax ≤ b, x ≥ 0

The optimal solution is x = [xB 0] if we assume the solution is not
degenerate. Degeneracy occurs in the situation where constraints bind si-
multaneously, and there are more binding constraints than positive valued
activities.

∴ xB = B−1b and ∆xB = B−1∆b

Suppose ∆xB is small enough so there is no change in the basis, then we
can define new x values (x̃) as:

x̃ = [xB + ∆xB
... 0]

This results in an update from the old objective function value to a new
value:

Π = c′BxB (old) → Π̃ = c′B(xB + ∆xB) (new)

∆Π = Π̃−Π = c′B∆xB = c′BB−1∆b

∆Π = λ∆b
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By selecting the bth
i activity and solving for λ, we find the impact on

the objective function of a marginal change in resource availability, given no
change in the basis B. This is:

∆Π
∆bi

= λi

Note that from the equation λ′ = c′BB−1 we see that for linear problems,
the value of λ does not change with ∆b unless the basis (B) changes, or the
objective function coefficients cB are changed by parameterization. To get
the derived demand for an input, the output price is not changed.

There are two important results from this analysis:

1. For LP problems, the marginal change in the objective function for
changes in resources (∆Π/∆b) is constant until ∆b is large enough to
cause a change in basis.

2. When the basis changes, the value of λ changes due to new values in
c′B and B. This gives rise to the stepwise response to parameterization
shown in Figure 4.1.

.

b

λi

Figure 4.1: Derived Demand for an input found by parameterizing the RHS.
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4.6.2 Generating Supply Functions for Outputs

Similarly to the demand functions, supply functions are obtained by param-
eterizing a single objective function coefficient (say ci) by small incremental
values over a specified range. At each point the model is optimized and the
quantity of the output produced (xi) is plotted against the price to form the
supply function. Clearly, for LPs there will only be a change in the product
xi when there is a change of basis caused by the change in ci. Accordingly,
the reaction when xi is zero and therefore a non-basis activity is going to be
different from the situation when xi > 0 and is in the basis.

Non-Basis activity supply parameterization

If xi = 0 , then from the optimality conditions we know that the reduced
cost for this activity (assuming maximization) is ri = ci − zi < 0.

Since zi = λ′di and λ′ = c′BB−1, the value of zi is unchanged by a
change in ci because it is not in the vector cB. However, if the value of ci is
increased by less than ri, then the reduced cost will still be negative (< 0)
though reduced in numerical value, and xi will still be a non-basis variable
with a value of zero.

If the increase in ci is greater than ri, that is: ∆ci > ri, then ri will
become positive and this will induce a change of basis which will bring the
xi activity into the basis with a positive value.

Basis activity supply parameterization

Consider parameterizing the returns from a basis variable xk. The coefficient
ck is now part of the vector cB. Since xk is an optimal basic variable, we
know that rk = ck − zk = 0.

Again, zk = λ′ dk and λ′ = c′BB−1 Thus the value of zk is changed by a
change in ck, and from the simplex criteria we know that:

• There is some value of ck where the basis will change, since ∆ck will
cause ∆λ, and some activities will leave the basis.

• The new basis will have a larger value for xk since the reduced cost
with the higher ck value in the basis value vector will increase the value
of rk.

Thus whether we start with a non-basis or basic activity, parameterizing
the objective coefficient over a discrete range will result in a series of stepped
increases in the quantity of xk in the optimal solution. The resulting supply
function will be an upward sloping supply function.
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4.7 Complementary Slackness

4.7.1 Primal Complementary Slackness

The concept of Complementary Slackness (CS) applies to both the Primal
and Dual problems, but is easier to conceptually understand in the Primal
case. The formal proofs are developed for the Dual complementary slackness
case.

Given the standard LP problem of:

max c′x
subject to Ax ≤ b, x ≥ 0

The Primal complementary slackness theorem says that for the jth con-
straint:

If bi − a′ix > 0 then λi = 0

This is summarized as (bi− a′ix)λi = 0 or written in summation form as
(bi − Σjaijxj)λi = 0.

This says that if the total use of the ith input in all productive uses is
less than the amount of input available, then the marginal scarcity value of
additional units of input is zero.

Note the special case in which both bi − Σjaijxj and λi are zero. This
says that the constraint is binding, but an additional unit of bi will not add
to the objective function value.

An alternate definition says if λi > 0, then (bi − Σjaijxj) = 0, i.e., the
shadow value cannot be positive if the constraint is not binding.

To get an intuitive idea of Primal complementary slackness, imagine
that you are sunbathing on a large, sandy, uncrowded and hot beach. If you
are offered additional sand for $10 you are unlikely to purchase it, as your
sand constraint is not binding. However if you are offered a cold drink (you
do not have any), you are probably willing to pay a price higher than the
supermarket price to get a cold drink right there, right then.

4.7.2 Dual Complementary Slackness

The Standard Dual Problem is:

minλ′b
subject to A′λ ≥ c, λ > 0



56 CHAPTER 4. THE DUAL PROBLEM

Theorem

Let x and λ be feasible solutions to the standard Primal and Dual problems.
A necessary and sufficient condition for them to be optimal is:

1. If xi > 0 then λ′ai = ci.

2. If λ′ai > ci then xi = 0.

These conditions can be combined in matrix form as: (c′− λ′A)x = 0. This
is a very important equality.

The “Free Lunch” Theorem

Note xi is never < 0 by definition of feasibility, and ci is never > λ′ai by Dual
constraint that λ′A ≥ c. The intuition for the direction of this constraint
is that under economic (and optimizing) assumptions λ′A < c cannot exist;
if productive resources were priced below their immediate productive value
one could make instantaneous capital gains (A “Free Lunch”).

Proof

Sufficiency: The logic of sufficiency can be summarized as ”If the conditions
hold then the solution must be optimal”.

Assume that (c′ − λ′A)x = 0 holds. Rewrite it as:

λ′Ax = c′x

Since Ax = b for any basic feasible solution, the sufficient conditions can be
written as λ′b = c′x. By the Duality theorem λ and x must be optimal if
λ′b = c′x.

Necessity: The logic of necessary conditions can be summarized as: ”If
the problem is optimal, then the conditions hold”.

Assume optimality.
If λ∗ and x∗ are optimal solutions, then from (c′ − λ′A)x = 0 we get:

λ∗
′
b = c′x∗

Dropping the * notation and substituting for b gives λ′Ax = c′x and
therefore (c′ − λ′A)x = 0.
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4.7.3 Demonstrating Complementary Slackness

Case I: Show that: xi > 0 ⇒ c′i − λ′ai = 0

In the production problem, we know that if something is produced (xi >
0), then its marginal revenue equals its marginal opportunity cost at the
optimum. This means that c′i − λ′ai=0.

We select the xB (Basis) partition of x, since only xi > 0 are in the basis
with an optimal solution and all their ri values are zero. Note that the rj

for each xi is the incremental benefit of bringing xi into the basis. When xi

is already in the basis, rj is equal to zero. This reflects the common sense
notion that you are not willing to pay more for an activity that you are
already enjoying (but may be willing to pay to get it back if it is taken from
you).

For the basis vectors B, the vector of ri = (c′B − c′B) = 0. Rewriting this
gives ri = (c′B − c′BB−1B). (Remember, rj = (c′D − c′BB−1D) when xj is
not in the basis). It follows that:

c′B − λ′B = 0 since ri = 0 for basis activities and ∴ c′B = λ′B

Note that since the non-basis xD are zero by definition, c′−λ′A becomes
c′ − λ′B.

Case II: Show that: xi = 0 ⇒ c′i − λ′ai < 0

In a production problem, if a product is not produced at the optimum, its
net revenue must be less than its opportunity cost. If x = 0, it implies
that it is not in the basis. Therefore, the partition of c′ − λ′A for non-basis
activities (xD) becomes c′D − λ′D.

Recall that rj = cj − zj = c′D − c′BB−1D = c′D − λ′D so the vector of
rj = c′D − λ′D. Since all rj < 0 for the non-basic xj values found at the
optimal solution, we find that (note the strict inequalities):

c′D − λ′D < 0 ⇒ λ′D > c′D or c′j − λ′dj < 0

Corollary: If λ and x are optimal Dual and Primal solutions, this implies
that (c′ − λ′A)x = 0 for all values.
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Example: Auto Dealer Hype

“Trust me, this car is selling below my invoice cost.”3

Here, we are optimizing from the buyer’s perspective. The buyer wants
to minimize the price for a car with certain attributes. cj is the dealer’s
invoice cost. Since cars are traditionally sold as a vector of attributes and
options on a base unit, a “loaded” car will be composed of a base unit, air
conditioning, FM stereo, “dealer’s prep,” etc. These attributes of the car
are represented by the m× 1 vector ai. The dealer’s problem is to assign a
set of prices λ′ to the ai vector such that λ′ai − ci ≥ 0.

Remember that prices on a car lot are always negotiable. The buyer
wants to minimize the cost of a car with a selection from the m×1 set of at-
tributes. The buyer wants to set their λ values to minimize λ′b. The dealer
wants to convince you that — at the asking λ price vector — the comple-
mentary slackness theorem does not hold and you are getting a bargain “
below dealer cost”.

The complementary slackness theorem says that if the dealer truly has
set prices λ below his invoice, then λ′ai − ci < 0 and the dealer will set
xi = 0. This is more often the case as the advertised below-invoice car
always seems to have “just sold” when you get to the dealer.

4.7.4 Duality and Reduced Cost

Since λ is the vector of opportunity costs on the binding resources, and rj

elements form a vector of revenue minus activity opportunity costs, they
must be connected to each other.

λ = c′BB−1

r = c′D − c′BB−1D = c′D − λ′D

Each individual element in the vector r, is rj = cj − λd where:

λ′dj = [λ1 . . . λm]




dji
...

djm




Therefore λ′dj is equal to the shadow value of inputs required to produce
a unit of activity xj that is not currently in the basis. For an optimal
solution, we would expect that all values in c′D − λ′D ≤ 0.

3If you believe this — stop reading this book and try to sell it for more than the retail
price.
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4.8 Exercises

1. Check the matrix derivations in Section 4.5 against the GAMS com-
puter printout for the Yolo model.
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Chapter 5

PMP Calibration of
Optimization Models

Even with a constraint structure and parameters that are theoretically cor-
rect, it is highly unlikely that a linear model will calibrate closely to the base
year data. This is inherent in the structure of models that are, by definition,
simplified abstractions of the real systems. In the process of abstracting and
simplifying a real system the model loses information and needs to be ver-
ified against actual behavior. Just as in econometric modeling there are
two phases of model development, namely estimation and prediction, in
optimization modeling there are the two phases of model calibration and
simulation.

Fundamentally, the calibration process is one of using a hypothesized
function and data on input and output levels in the base year to derive spe-
cific model parameter values that “close” the model. By closing the model,
we mean that the calibration parameters lead to the objective function be-
ing optimized for the base year conditions at the observed base year values.
Like econometrics, calibration methods assume that actions by individuals
are motivated by their optimization of some set of criteria. It follows that
if we can derive the parameters, that when optimized, lead to the observed
actions, we have derived the parameters most likely to have been used by
the decision maker.

Given that most optimization models are specified to optimize profits to
economic decision makers, they can in theory be calibrated from the demand
(price) or supply (cost) sides. For many years builders of large quadratic
programming models have calibrated model prices by deriving demand pa-
rameters. However demand side calibration can only help when the model

61
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is on a scale large enough so that changes in the levels of output change
product prices. In addition, because optimization models are usually speci-
fied with several regions supplying a single market demand, a small number
of market demand parameters cannot calibrate the cropping patterns over
several regions.

5.1 Calibrating on the Model Supply Side

This section contains a short overview and critique of the traditional meth-
ods of calibrating the supply side of optimization models using linear con-
straints. The shortcomings of the constraint calibration methods lead to a
discussion of ways to derive nonlinear supply functions that are based on
observed behavior by decision makers, but calibrate the model in general.
These methods are termed “Positive Mathematical Programming” (PMP)
since they are based on positive inferences from the base year data, rather
than normative assumptions (Howitt, 1995b).

5.1.1 A Review of Supply Side Constraint Calibration

Programming models should calibrate against a base year or an average over
several years. Policy analysis based on normative models that shows a wide
divergence between base period model outcomes and actual production pat-
terns is generally unacceptable. However calibration by adding linear con-
straints is also unsatisfactory. Models that are tightly constrained can only
produce the subset of normative results that the calibration constraints dic-
tate. The policy conclusions are thus bounded by a set of constraints that
are expedient for the base year, but are often inappropriate under policy
changes. This problem is exacerbated when the model is built on a regional
basis with very few empirical constraints, but a wide diversity of crop pro-
duction. For example, the Yolo model presented in the previous chapter is
highly simplified with only four cropping activities, but still requires unreal-
istic constraints on the amount of labor and water that can be employed to
produce all four crops in the optimal solution. While labor requirements do
vary, they are subject to a labor supply which is rarely constrained. The sup-
ply function will increase labor available in a given quarter at an increased
cost of overtime or operations performed by custom operators. To suggest
that a more profitable crop in some policy scenario will never be grown be-
yond a certain limit because of labor constraints is to radically depart from
the actual empirical solution. In addition to the labor constraint, the water
constraint may also be artificially constraining if the farmers have access
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to groundwater or river pumping. More complex linear production models
require more complicated constraint structures to reproduce the observed
cropping pattern. In many traditional optimization models the proportions
of crops are restricted by “rotational” constraints or “flexibility” constraints.
These constraints determine the optimal solution not only for the base year,
for which they are appropriate, but also for policy runs that attempt to
predict the outcome of changed prices, costs or resource availability. The
solution of the model under policy runs is therefore significantly restricted
by the base year solution constraints.

This section is a brief overview of some of the past calibration methods
in mathematical programming models. For a discussion of other calibration
methods see Hazell and Norton (1986) or Bauer and Kasnacoglu (1990).
It is worth noting that no single linear constraint calibration method has
proved sufficiently satisfactory to dominate the mathematical programming
literature.

Previous researchers such as Day (1961) have attempted to provide added
realism by imposing upper and lower bounds to production levels as con-
straints. McCarl (1982) advocated a decomposition methodology to rec-
oncile sectoral equilibria and farm level plans. Both approaches require
additional micro level data and result in calibration constraints influencing
policy response.

Meister et al. (1978), in their national quadratic programming model,
specify 103 producing regions and aggregate the results to 10 market re-
gions. Despite this structure, they note the problem of overspecialization
and suggest the use of rotational constraints to curtail the overspecializa-
tion. However, it is comparatively rare that agronomic practices are fixed
at the margin, more commonly they reflect net revenue maximizing trade-
offs between yields, costs of production, and rotational externalities between
crops. In this latter case, the rotations are themselves a function of relative
resource scarcity, output prices, and input costs.

Hazell and Norton (1986) suggest six tests to validate a sectoral model.
First, a capacity test checks whether the model constraint set allows the base
year production. Second, a marginal cost test ensures that the marginal
costs of production, including the implicit opportunity costs of fixed inputs,
are equal to the output price. Third, they suggest a comparison of the Dual
value on land with actual rental values. Three additional comparisons of
input use, production level, and product price are also advocated. Hazell
and Norton show that the percentage of absolute deviation for production
and acreage over five sectoral models ranges from 7 percent to 14 percent
deviation. The constraint structures needed for this validation are not de-
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fined.
In contrast, the PMP approach achieves exact calibration in acreage,

production and price (Howitt, 1995b). The PMP approach was applied to
the Turkish Agricultural Sectoral Model (TASM) which is one of the models
listed by Hazel and Norton. The resulting PMP version of TASM calibrated
exactly with the base year and showed consistency in the parameters over
the seven years used for calibration (Bauer and Kasnacoglu, 1990). A PMP
calibrated model was developed to analyze the effects of large inter-sectoral
water reallocations in California (USBR Staff, 1997). The model termed
the Central Valley Production Model (CVPM) was tested by out of sample
predictions of regional crop acreage changes during a recent drought period.
The CVPM predictions were close with three contract crops (Sugar beet,
Tomatoes, and Subtropical orchard) having a 14-23 % error. The remaining
nine crops had prediction errors below 7%. Regional crop acreage was pre-
dicted for eleven regions. For all of the regions the crop acreage predictions
had errors below six percent.

The calibration problem for farm level, regional, and sectoral LP models
can be mathematically defined by the common situation in which the number
of binding constraints in the optimal solution (m) are less than the number
of non-zero activities (n) observed in the base solution. If the modeler is
fortunate enough to have empirical data to specify, a priori, a realistic con-
straint set that reproduces the optimal base year solution, then additional
model calibration may be redundant. The PMP approach is developed for
the majority of empirical model builders who, for lack of empirical justifi-
cation, data availability, or cost, find that the empirical constraint set does
not reproduce the base year result. The LP solution is an extreme point
of the binding constraints. In contrast, the PMP approach views the opti-
mal farm production as a boundary point which is a combination of binding
constraints and first order conditions.

Relevant constraints should be based on either economic logic or the
technical environment under which the agricultural production is operating.
Constraints should generally represent allocatable input quantities, actual
rotational limits and relevant policy constraints. When the basis matrix of
valid empirical constraints has a rank less than the number of observed base
year activities, the resulting optimal solution will suffer from overspecializa-
tion bias of production activities compared to the base year.

A root cause of these problems is that linear programming was origi-
nally used as a normative farm planning method where full knowledge of
the production technology is assumed. Under these conditions, any produc-
tion technology can be represented as a linear Leontief specification, subject



5.1. CALIBRATING ON THE MODEL SUPPLY SIDE 65

to resource and stepwise constraints. For aggregate policy models, this nor-
mative approach over-simplifies the production and cost technology due to
inadequate knowledge. In most cases, the only regional production data
available is an average or “representative” figure for crop yields and inputs.
This common data situation means that the analyst using linear produc-
tion technology in programming models is attempting to estimate marginal
behavioral reactions to policy changes, based on average data observations.
The average conditions can be assumed to be equal to the marginal condi-
tions only where the policy range is small enough to admit linear technology
over the whole range.

Two broad approaches have been used to reduce the specialization errors
in optimizing models. The demand-based methods have used a range of
methods to add risk or endogenize prices. These have reduced the calibration
problem, but substantial calibration problems remain in many models (Just,
1993).

A common alternative approach is to constrain the crop supply activities
by rotational (or flexibility) constraints or step functions over multiple activ-
ities (Meister et al., 1978). In regional and sectoral models of farm produc-
tion the number of empirically justifiable constraints are comparatively few.
Land area and soil type are clearly constraints, as is water in some irrigated
regions. Crop contracts and quotas, breeding stock, and perennial crops are
others. However, it is rare that some other traditional programming con-
straints such as labor, machinery, or crop rotations are truly restricting to
short-run marginal production decisions. These inputs are limiting, but only
in the sense that once the normal availability is exceeded, the cost per unit
output increases due to overtime, increased probability of machinery failure
or disease. In this situation the analyst has a choice. If the assumption of
linear production (cost) technology is retained, the observed output levels
infer that additional binding constraints on the optimal solution should be
specified. Fixed proportion rotational constraints are a common example of
this approach.

An alternative explanation of the situation, where there are more crop
activities than constraints, is that the profit function is nonlinear in land
for most crops, and the observed crop allocations are a result of a mix of
unconstrained and constrained optima. The equilibrium conditions for this
case are satisfied if some, or all, of the cropping activities have decreasing
returns to land as the crop acreage is increased. The most common reasons
for a decreasing returns per acre are declining yields due to heterogeneous
land quality, risk aversion, or increasing costs due to restricted management
or machinery capacity.
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5.2 Positive Mathematical Programming

The positive mathematical programming (PMP) approach is being adopted
quite rapidly for agricultural sector models. In the introduction to their
book on “Agricultural Sector Modelling and Policy Information Systems,”
Heckelei et al. state that they received :

a rich supply of about 60 proposals from 16 countries reflecting
the breadth of work directed to agricultural sector modeling and
policy information systems. Because the sample of proposals is
indicative of current emphasis in research, it is worth mentioning
that, from a methodological point of view almost 25% of the sup-
ply might be called “econometric partial’ analysis, another 25%
“programming models” (half of which relying on PMP) whereas
the remaining half of the proposals covered a multitude of quan-
titative methods . . .

In European agricultural economics, the PMP calibration method has
become a widely accepted standard method for agricultural economic opti-
mization models. A bibliography of 40 published models that have utilized
PMP is in an appendix at the end of the book.

5.2.1 Behavioral Calibration Theory

The process of calibrating models to observed outcomes is an integral part of
constructing physical and engineering models but is rarely formally analyzed
for optimization models in agricultural economics. In this section we show
that observed behavioral reactions yield a basis for calibrating models in a
formal manner that is consistent with microeconomic theory. Analogously
to econometrics, the calibration approach draws a distinction between the
two modeling phases of calibration (estimation) and policy simulation (pre-
diction).

On a regional level, the information on the product output levels and
farm land allocations is usually more accurate than the estimates of marginal
crop production costs. This is particularly true when micro data on land
class variability, technology, and risk feature in the farmers’ decisions, but
are absent in the aggregate cost data available to the model builder. Accord-
ingly, the PMP approach uses the observed acreage allocations and outputs
to infer marginal cost conditions for each regional crop allocation observed.
This inference is based on parameters that are known to be accurately ob-
served and the usual maximizing and concavity assumptions on the profit
function.
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The Nonlinear Calibration Proposition: If the model does not calibrate
to observed production activities with the set of linear constraints that can
be empirically justified, a necessary condition for profit maximization at the
observed values is that the objective function is nonlinear in at least some
of the activities.

Many regional models have some nonlinear terms in the objective func-
tion reflecting endogenous price formation or risk specifications. Although it
is well known that the addition of nonlinear terms improves the diversity of
the optimal solution, there is usually an insufficient number of independent
nonlinear terms to accurately calibrate the model.

The Calibration Dimension Proposition: The ability to calibrate the
model with complete accuracy depends on the number of nonlinear terms
that can be independently calibrated.

The ability to adjust some nonlinear parameters in the objective func-
tion, typically the risk aversion coefficient, can improve model calibration.
However, if there are insufficient independent nonlinear terms the model
cannot be made to calibrate precisely. In technical terms, the number of
instruments the modeler has available to calibrate the model may not span
the set of activities that need to be calibrated.
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Proving the Propositions1

Proposition 1: Given an agent who maximizes a multi-output profit
subject to linear constraints on some inputs or outputs. If the number of
nonzero nondegenerate production activity levels observed (k) exceeds the
number of binding constraints (m), then a necessary and sufficient condition
for profit maximization at the observed levels is that the profit function be
nonlinear (in output) in some of the (k) production activities.

Proof: Define the profit function in general as a function of input allocation
x, f(x).

max f(x̄) (5.1)
subject to Āx̄ ≤ b

x̄ = n× 1, Ā = m× n, m < n

At the observed optimal solution (nondegenerate in Primal and Dual
specifications) there are k non-zero values of x̄. Drop the zero values of x̄ and
define the m×m basic partition of A as the (m×m) optimal solution basis
matrix B and the remaining partition of A as N (m× k−m). Partitioning
the k × 1 vector x into the m × 1 vector xB and (k − m) × 1 vector xN ,
Equation 5.1 is rewritten as:

max f(x) subject to [B
... N ]

[
xB

xN

]
= b (5.2)

or
max f(xB, xN ) subject to BxB + NxN = b (5.3)

Given the constraint set in Equation 5.3, xB can be written:

xB = B−1b−B−1NxN (5.4)

Since 5.4 are binding constraints, substituting Equation 5.4 into the
objective function, Equation 5.3, gives:

max f(B−1b−B−1NxN , xN ) (5.5)

Taking the gradient of Equation 5.5 with respect to xN yields the reduced
gradient (rxN ):

rxN = ∇fxN −∇fxBB−1N (5.6)

1From Howitt (1995b)
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A zero-reduced gradient is a necessary condition for optimality (Leun-
berger, 1984). Without loss of generality, we define the basic part of the
objective function as linear with coefficients cB which yields the optimality
condition:

rxN = ∇fxN − c′BB−1N = 0 (5.7)

The objective function associated with the independent (xN ) variables
has either zero coefficients, linear coefficients, or a nonlinear specification. If
f(xN ) had zero coefficients, xN would have to be zero at the optimum given
the positive opportunity cost of resources. If f(xN ) was linear, say cN then
Equation 5.7 would be the reduced cost of the activity. A zero reduced cost
of a nonbasic activity implies degeneracy when coupled with a zero activity
level xN . Since xN > 0 at the optimum, f(xN ) cannot be linear and hence
must be nonlinear for Equation 5.7 to hold.

Proposition 2: A necessary condition for the exact calibration of a k × 1
vector x is that the objective function associated with the (k−m)×1 vector
of independent variables xN contain at least (k −m) linearly independent
instruments that change the first derivatives of f(xN ).

Proof: By Proposition 1, f(xN ) is nonlinear in xN . Each element of the
gradient ∇f(xN ) has a component that is a function of xN , and probably
also a constant term. The optimality conditions in Equation 5.7 are modi-
fied by subtracting the constant components in the gradient (k) from both
sides to give:

∇f̄xN = c∗ (5.8)

where:
∇f̄xN = ∇fxN − k̄′ and c∗ = c′BB−1N − k̄′

The 1× (k −m) vector ∇f̄xN can be written as the product of xN and
a (k −m)× (k −m) matrix F , where the ith column of F has elements

∂f(xN )
∂xi

1
xi

as in Equation 5.4. Using this decomposition:

∇f̄xN = x′NF (5.9)

The necessary reduced gradient condition (Equation 5.8) can now be
rewritten as:

x′NF = c∗ (5.10)
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Calibration of an optimization model requires that the observed solution
vector x̃ results from the optimal solution of the calibrated model. From
Equation 5.4, the independent values x̃N determine the dependent values x̃B.
Since from Equation 5.8, c∗ is a vector of fixed parameters, the necessary
condition (Equation 5.10) can only hold at x̃i if the values of F−1 can be
calibrated to map c∗ into x̃N . Thus the matrix of calibrating gradients F−1

must span x̃ such that:
x̃′N = c∗F−1 (5.11)

It follows that the rank of F must be (k − m) and there have to be
(k −m) linearly-independent instruments which change the values of F to
exactly calibrate x̃.

Example: Let xn be a 2× 1 vector,
[

x1

x2

]
, and

f(xN ) = α′xN − x′NQxN (5.12)

where

α =
[
α1

α2

]
, Q =

[
q11 q12

q21 q22

]

and Q is symmetric. Writing 5.7 as:

[α1 − 2x1q11 − 2x2q12, α2 − 2x2q22 − 2x1q21]− c′BB−1N = 0 (5.13)

defining the 1× (k −m) row vector c∗ as in Equation 5.8 results in:

[2x1q11 + 2x2q12, 2x1q21 + 2x2q22] = c∗ (5.14)

By definition, the left-hand side of Equation 5.14 can be written as the
product of x′N and a matrix F where:

F =
[
2q11 2q21

2q12 2q22

]
(5.15)

Therefore the optimality condition that the reduced gradient equals zero
requires that xNF = c∗. If particular values of xN , say x̃N , are required by
changing the coefficients of F , then x̃N = c∗F−1.

Note from Equation 5.8 that −c∗ is the difference between the constant
linear term in the objective function k̄ and the opportunity cost of the
resources. Thus −c∗ is equal to the vector of PMP Dual values λ2. Solving
for the parameters of F , given c∗ and x̃N , is computationally identical to
solving for the vector of δi parameters which requires the necessary condition
that F is linearly independent and of rank (k −m).
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Corollary: The number of calibration terms in the objective function
must be equal to or greater than the number of independent variables to be
calibrated.

Decoupling Proof2

Constraint Decoupling:
Constraint decoupling is achieved by the perturbation of the calibration
constraints. Where the binding and slack resource constraints under values
x̃ are separated into groups I and II, it is shown to preserve the Primal and
Dual values.

Problem P1:

max f(x) (5.16)
subject to Ax = b (I)

Âx < b̂ (II)
Ix = x̃ (III)

x = k × 1, A = m× k, Â = (l −m)× k

x̃ = k × 1, k > m, b = m× 1, b̂ = (l −m)× 1

x̃ is a k × 1 vector of activities that are observed to be nonzero in the
base-year data; k > m implies that there are more nonzero activities to
calibrate than the number of binding resource constraints (I).

We assume that f(x) is monotonically increasing in x with first and sec-
ond derivatives at all points and that Problem P1 is not Primal or Dual
degenerate.

Proposition 3: There exists a k × 1 vector of perturbations ε(ε > 0) of
the values x̃ such that:

• Constraint set I in Equation 5.16 is decoupled from constraint set III,
in the sense that the Dual values associated with constraint set I do
not depend on constraint set III;

• The number of binding constraints in constraint set III is reduced so
that the problem is no longer degenerate; and

• Binding constraint set I remains unchanged.

Proof: Define the perturbed problem with the calibration constraints
defined as upper bounds without loss of generality.

2Also from Howitt (1995b)
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Problem P2:

max f(x) (5.17)
subject to Ax = b (I)

Âx < b̂ (II)
Ix ≤ x̃ + ε (III)

Any row of the nonbinding resource constraints, Âx < b̂ in Problem P1
can be written as:

k∑

j=1

|âijxj | < b̂i i = 1, . . . , (1−m) (5.18)

Select the constraint i = 1, . . . , (1−m) such that:

bi −
k∑

j=1

âij x̃j

is minimized. If εj > 0, j = 1, . . . , k are selected such that

k∑

j=1

|âijεj | <

bi −

k∑

j=1

âij x̃j


 (5.19)

By rearranging Equation 5.19, an inequality holds for the constraint
when x = x̃+ ε, but x cannot exceed x̃+ ε from constraint set III; therefore,
those constraints in Ax < b that are inactive under the values x̃ will remain
inactive after the perturbation to x̃ + ε. The invariance of the binding
resource constraints for (I) under the perturbation ε can be shown using the
reduced gradient approach (Leunberger, 1984). Using Equation 5.19 we can
write Problem P2 using only constraint sets I and III as:

max f(x) (5.20)
subject to Ax = b

Ix ≤ x̃ + ε

where A(m× k) and I = k× k. Invoking the nondegeneracy assumption
for A and starting with the solution for Problem P1 (i.e., x̃), the constraints
can be partitioned as:




B N
I1

I2




[
xB

xN

] =
≤
≤




b
x̃B + εB

x̃N + εN


 (5.21)



5.2. POSITIVE MATHEMATICAL PROGRAMMING 73

For brevity, the partition of A has been made so that the (k−m) activ-
ities associated with N have the highest value of marginal products for the
constraining resources. The reduced gradient for changes in x̃N is therefore:

rxN = ∇fx̃N −∇fx̃BB−1N (5.22)

Since f(·) is monotonically increasing in xN and xB, the resource con-
straints will continue to be binding since the optimization criterion will
maximize those activities with a nonnegative reduced gradient until the re-
duced gradient is zero or the upper-bound calibration constraint x̃N + ε is
encountered. Since m < n, the model overspecializes in the more profitable
crops when subject only to constraint sets I and II. Under the specification
in Problem P2, the most profitable activities will not have a zero-reduced
gradient before being constrained by the calibration set II at values of x̃N +ε.
Thus, the binding constraint set I remains binding under the ε perturbation.

The resource vector for the resource constrained crop activities (xB) is
now:

b−N(x̃N + ε) (5.23)

and from Equation 5.21:

xb = B−1[b−N(x̃N + ε)]

Since B is of full rank m, exactly m values of xB are determined by the
binding resource constraints, which depend on the input requirements for
the subset of calibrated crop acre values x̃N + ε.

The slackness in the m calibration constraints associated with the m
resource constrained output levels xB, follows from the monotonicity of the
production function in the rational stage of production. Since the production
function is monotonic, the input requirement functions are also monotonic,
and expansion of the output level of the subset of crop acreage to x̃N +ε will
have a nonpositive effect on the resource vector remaining for the vector of
crop acreages constrained by the right-hand side, xB. That is:

b−N(x̃N + εN ) ≤ b−Nx̃N for εN > 0 (5.24)

But since the input requirement functions for the xB subset are also
monotonic, Equations 5.24 and 5.21 imply that:

xB ≤ x̃B or xB < x̃B + εB for εB > 0 (5.25)

From Equation 5.25, it follows that the m perturbed upper-bound cali-
bration constraints associated with xB will be slack at the optimum solution.
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Given Equations 5.19 and 5.25, the constraints at the optimal solution to
the perturbed Problem P2 are:




B N

Â1 Â2

I1

I2




[
xB

x̃N + εN

] =
<
<
=




b

b̂
x̃B + εB

x̃N + εN


 (5.26)

Thus, there are k binding constraints, b(m×1) and xB +εN [(k−m)×1].
The Dual constraints to this solution are:

[
B′ 0
N ′ I2

] [
λ∗1
λ∗2

]
=

[ ∇xBf(x∗)
∇xN f(x∗)

]
(5.27)

using the partitioned inverse,
[

λ∗1
λ∗2

]
=

[
P 0
Q I

] [ ∇xBf(x∗)
∇xN f(x∗)

]
(5.28)

where P = B′−1 and Q = −N ′B′−1.
Thus, the ε perturbation on the upper-bound constraint set II decouples

the Dual values of constraint set I from constraint set II. This ensures that
k constraints are binding and the partitioning of A into B and N is the
unique outcome of the optimal solution to problem P2 in the first stage of
PMP.

End of Proofs
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5.2.2 A Cost-Based Approach to PMP Calibration.

This section demonstrates the PMP calibration process using nonlinear costs
and constant yields to calibrate the model. The derivation is shown in its
simplest form. Once you have the concept, the more complex development
of changing yields will be clearer.

A key concept in PMP calibration based on work by Fiacco & McCor-
mack , is that every linear constraint in an optimization problem can also be
modeled by a nonlinear cost function with appropriately chosen coefficients.

Single Crop Cost-Based PMP Calibration

A single linear crop production activity is measured by the acres x allocated
to the crop. The yield is assumed constant. The data available to the
modeler is:

Marginal revenue/acre is assumed constant at $500/acre
Average Cost is $300/acre
Observed acres allocated to the crop 50 acres

In the first step, a measure of the value of the residual cost needed to cali-
brate the crop acreage to 50 (by setting marginal revenues equal to marginal
cost at that acreage) is obtained from a constrained linear program. See Fig-
ure 5.1.

maxΠ(x) = 500x− 300x

subject to x ≤ 100
(5.29)

The calibration proceeds in five steps:

Step I From the nonlinear calibration proposition we know that either (or
both) the cost or production function is nonlinear if we need calibra-
tion constraints. In this case we define the total cost function to be
quadratic in acres (x). There are very many possible nonlinear forms,
but this is the simplest general form.

TC = αx +
1
2
γx2

Step II Under unconstrained optimization crop acreage expands until the marginal
cost equals marginal revenue. Therefore MC = MR at x = 50.
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X(acres)

$

MR = 500

AC = 300

x* = 50

�

2 = 200

Figure 5.1: LP Constrained by calibration constraints

Step III It follows that the value λ2 in the linear model is the difference at the
constrained calibration value and is equal to MR − AC. But (from
Step II) we know that MR = MC, and therefore λ2 = MC − AC
(since MR = MC at x = 50). Given the hypothesized total cost
function TC:

MC = α + γx AC = α +
1
2
γx

MC −AC = α + γx− (α +
1
2
γx)

∴ λ2 = MC −AC =
1
2
γx

and the cost slope coefficient is calculated as:

γ = 2λ/x∗ = (2× 200)/50 = 8

Step IV We can now calculate the value of the cost function intercept α using
the AC information in the basic data set:

300 = α + (
1
2
× 8× 50) ⇒ α = 300− 200 = 100
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Step V Using the values for α and γ, the unconstrained quadratic cost problem
is:

maxΠ = 500x− αx− 1
2
γx2 = 500x− 100x− 1

2
8x2

∂Π
∂x

= 500− 100− 8x

Setting ∂Π/∂x = 0 (which implies MR = MC) results in:

8x = 400 ⇒ x∗ = 50

Notes 1. The unconstrained model calibrates exactly in x and also in Π.

2. MC = MR at x = 50.

3. AC = 300 at x = 50.

4. The cost function has been “tilted”.

5. Two types of information are used: x∗ and AC.

6. The observed x∗ quantities need to be mapped into value space
(λ2) by the calibration constrained LP before it can be used.

7. The model now reflects the preferences of the decision maker.

8. The model is unconstrained by calibration constraints for policy
analysis.

5.2.3 An Analytic Derivation of Calibration Functions

This section will show that the PMP non-linear calibration approach can
be applied to any non-degenerate linear problem. The derivation of the
general result proceeds in three steps. The first step shows that the Dual
value on the calibration constraint for the calibrated activity set xk is equal
to the reduced cost of the activity xi in the un-calibrated base problem.
The second step shows that if the correct non-linear penalty function is
added to the objective function, the resulting nonlinear problem satisfies
the necessary conditions for optimality at the required value of xi. Fi-
nally, it is shown that the correct penalty function has a gradient at the
required value of xi equal to the negative of the calibration Dual. The gen-
eral linear programming optimization problem can be compactly written as:

maxx c′x
subject to Ax ≤ b, x ≥ 0

(5.30)
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Where c is an p × 1 vector of net returns per unit activity; the matrix
A and right hand side b are, respectively, the usual technical constraints
and right hand sides. The dimension of A is m × p, (m < p). The ba-
sis dimension of A is m. If the number of observed activities is n(n ≤ p),
where n = k + m, then — in addition to the xm basis activities — there
are an additional k activities (xk) that are observed and need to be cal-
ibrated into the optimal model solution. For simplicity, define the LP
problem as only subject to one set of upper bound calibration constraints:

maxx c′x
subject to Ax ≤ b, Ix ≤ x̃ + ε and x ≥ 0

(5.31)

where ε is added to the calibration constraints to prevent degeneracy.3

The optimal basic solution to this problem will have a mix of n bind-
ing resource and calibration constraints. The A matrix can be partitioned
into an m × m basis matrix B that corresponds to the m-least-profitable
“marginal” activities (xm), and an associated m × k matrix N for the k
calibrated activities xk. Dropping out the p− n zero activities, the optimal
basic solution to equation 5.31 can be written as:

maxx c′mxm + c′kxk

subject to Âx = b̂ — which is partitioned as:[
B N
0 I

] [
xm

xk

]
=

[
b

x̃k + ε

] (5.32)

The optimal Dual constraints for this problem are Â′λ = c which are
partitioned as: [

B′ 0
N ′ I

] [
λ1

λ2

]
=

[
cm

ck

]
(5.33)

Equation 5.33 can be solved for the values of λ1 and λ2 by inverting the
partitioned constraint matrix, using the partitioned form of the inverse, to
yield: [

λ1

λ2

]
=

[
P 0
Q I

] [
cm

ck

]
(5.34)

Where P = B′−1 and Q = −N ′B′−1

3See the proof of proposition 3 on pages 71-73.
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From equation 5.34 we see that the k x 1 vector of Dual values for the
binding calibration constraints (λ2) has the value:

λ2 = ck −N ′B′−1cm (5.35)

The right hand side of equation Equation 5.35 is the difference between
the gross margin of the calibrating activity ck and the equivalent gross mar-
gin that can be obtained from the less profitable marginal cropping activities
cm. In other words λ2 is the marginal opportunity cost of restricting the
calibrated activities xk by the amount needed to bring the marginal xm ac-
tivities into the expanded basis. This cost of restricting the more profitable
activities xk in the basis is similar to the familiar reduced cost term.

Note first that when land is the numeraire,4 the corresponding coeffi-
cients in the N and B matrices are one.

Second, the sign on λ2 is positive for GAMS printouts as a marginal
increase in the right hand side upper bound on the more profitable activities
will increase the objective function value.

The Dual values associated with the set of binding calibration constraints
(λ2) are independent of the resource and technology constraint Dual values
(λ1), since the constraint decoupling proposition (page 71-73) shows that the
values for λ1 are not changed by the addition of the calibration constraints.

If an increasing nonlinear cost function is added to the objective function
for the xk activities that need to be calibrated, the marginal and average
costs of producing xk will differ. The net return to land from xk now de-
creases as the acreage is increased. The net returns to land from xk reach
an internal equilibrium solution at the point where they are equal to the
opportunity cost of land set by the marginal crops xm. This condition is the
microeconomic “equimarginal” principle of optimal input allocation across
products.

If the calibration constraints are removed and a nonlinear cost for xk is
added, equation 5.31 becomes:

maxx c′mxm + c′kxk − f(xk)

subject to [B N ]
[

xm

xk

]
= b

(5.36)

The reduced gradient (the nonlinear equivalent of the reduced cost) for
activities xk is derived by rewriting the set of binding constraints in Equa-

4Leontieff production needs a common unit of measurement.In agricultural models land
is usually chosen
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tion 5.36 so that xm is a function of xk:

xm = B−1b−B−1Nxk (5.37)

Substituting the expression for xm back into the objective function in
equation 5.36 defines the problem as an unconstrained function of xk.

Max c′m(B−1b−B−1Nxk) + c′kxk − f(xk) (5.38)

The unconstrained gradient of this nonlinear problem in xk is defined as
the reduced gradient. Taking the derivative of equation 5.38 and transposing
yields:

ck −N ′B′−1cm −∇f ′(xk) (5.39)

Where ∇f ′(xk) is the gradient of f(xk) and is a row vector by definition.
Leunberger (1984) shows that a zero valued reduced gradient is a nec-

essary condition for the optimum of a nonlinear problem. The calibrated
equation 5.36 will optimize with a zero reduced gradient at the values x̃k

when ck − N ′B′−1cm = ∇f ′(xk) or substituting into equation 5.35, when
∇f ′(xk) = λ2.

The PMP Proposition: If the parameters of f(x) are calibrated such
that at the value x̃k, ∇f ′(x̃k) = λ2, then the model will be optimal exactly
at the calibrating acres.

To reiterate, equation 5.35 shows that λ2 is equal to the first two terms
of equation 5.39. It follows that the reduced gradient of the resulting non-
linear problem will equal zero at x̃k. As this is a necessary condition for
the optimum, the problem in equation 5.36 will calibrate at the values x̃k

without calibration constraints.
Equation 5.38 shows that optimal solution to the calibrated problem

responds to changes in the linear gross margin (c), the right hand side values
(b),” or the constraint coefficients (B or N).

The economic interpretation of the calibration cost function f(xk) is as
follows. From equation 5.35, we see that λ2 is equal to the difference between
the gross margins per unit land for xk and xm. The gross margins are
calculated from the observed average variable costs, that is ci = (piyi−ACi).
It follows that:

λ2 = (pkyk −ACk)− (pmym −ACm) (5.40)

but since the gross margin for the marginal crop xm is equal to the
opportunity cost of land, and since the land coefficients in N and B equal
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one, using equation 5.34 and 5.35 we can rewrite 5.40 as:

λ2 = (pkyk −ACk)− λ1 or λ2 + λ1 = (pkyk −ACk) (5.41)

but at the optimal allocation of land, all crops must have a marginal net
return equal to the opportunity cost of land (by the equimarginal princi-
ple), therefore at the optimal solution to the nonlinear problem defined by
equation 5.36:

λ1 = pkyk −MCk = pkyk −ACk − (MCk −ACk) (5.42)

substituting 5.41 into 5.42 yields:

λ2 = MCk −ACk (5.43)

To summarize, this section has shown that linear and nonlinear opti-
mization problems can be exactly calibrated by the addition of a specific
number of nonlinear terms. We have used a general nonlinear specification
to show that since the calibrated equation 5.31 yields the necessary condi-
tions 5.35. If the nonlinear equation 5.36 has a nonlinear cost function f(xk)
that satisfies equations 5.35, 5.39, and 5.43, the resulting nonlinear problem
will calibrate exactly in the Primal and Dual values of the original problem,
but without any inequality calibration constraints.

In the next section we show how the calibration procedure can be simply
implemented using a quadratic cost function in a two-stage process that is
initiated with a calibrated linear program.

5.3 An Empirical Calibration Method

The previous section showed that if the correct nonlinear parameters are cal-
culated for the (k−m) unconstrained (independent) activities, the model will
exactly calibrate to the base year values x without additional constraints.
The problem addressed in this section is to show how the calibrating param-
eters can be simply and automatically calculated using the minimal data set
for a base year LP.

Given that nonlinear terms in the supply side of the profit function are
needed to calibrate a production model, the task is to define the simplest
specification that is consistent with the technological basis of agriculture,
microeconomic theory and the data base available to the modeler.

A highly probable source of nonlinearity in the profit function is due to
heterogeneous land quality. This will cause the marginal cost per unit of



82 CHAPTER 5. PMP CALIBRATION OF OPTIMIZATION MODELS

output to increase as the proportion of a crop in a specific area is increased.
This phenomenon, first formalized by Ricardo, is widely noted by farmers,
agronomists, and soil scientists, but often omitted from quantitative pro-
duction models (Peach, 1993).

Defining yields per acre as constant and marginal cost as increasing in
land allocation is a considerable simplification of the complete production
process. Given the applied goal of this “positive” modeling method, the
calibration criteria used is not whether the simple production specification
is true, but rather, does it capture the essential behavioral response of farm-
ers, and can it be made to work with the restricted data bases and model
structures available.

Since land is assumed to be the only input activity and the Leontief
numeraire, the coefficient is equal to one.

In many LP problems such as the Yolo example, the objective function
coefficients ci represent the Gross margin per acre faced by the farmer. The
ci coefficient is composed of the product of the average yield times the price
per unit output, with the average variable costs deducted. Since we are
specifying the yield as constant but the marginal cost as increasing with
acreage in this model, we have to separate the cost and revenue components
of the gross margin.

The calibrated optimization problem equivalent to equation 5.36 and
with land as the restricting factor becomes:

Max
∑

i piyixi − (αi + 0.5γixi)xi

subject to Ax ≤ b, x ≥ 0
(5.44)

where ai1 = 1 and in this case A is a 1 × n vector, xi is the acreage of
land allocated to crop i, yi is the yield per acre, αi and γi are (respectively)
the intercept and slope of the total land cost function. In addition, ωj is the
average cost per acre of land.

The PMP calibration approach uses three Stages. In the first Stage a
constrained LP model is used to generate the Dual values for both the re-
source and calibration constraints, λ1 and λ2 respectively. In the second
Stage, the calibrating constraint Dual values (λ2 ) are used along with the
data-based average cost function to derive the unique calibrating cost func-
tion parameters (αi and γi). In the third Stage, the cost parameters are
used with base-year data to specify the PMP model in equation 5.44. The
resulting model calibrates exactly to the base-year solution and original con-
straint structure.
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The procedure is illustrated using a very simple problem which has a sin-
gle land constraint (5 acres) and two crops (wheat and oats). The following
parameters are used:

Wheat (w) Oats (o)
Crop prices Pw = $2.98/bu. Po = $2.20/bu.

Variable cost/acre ωw = $129.62 ωo = $109.98
Average yield/acre ȳw = 69 bu. ȳo = 65.9 bu.
Gross Margin/acre cw = 76.0 co = 35.0

The observed acreage allocation in the base year is 3 acres of wheat and 2
acres of oats.

Figure 5.2 shows the initial problem in a diagrammatic form for two
activities, with one resource constraint and two upper bound calibration
constraints. Note that at the optimum, the calibration constraint will be
binding for wheat, the activity with the higher average gross margin, while
the resource constraint will restrict the acreage of oats.

Acres Wheat

Poyo

02+�Acres Oats

�

1

�
o

�

2

3+�

�
w

Pwyw

�

1

Figure 5.2: Two LP Activities

The problem in Figure 5.2 is:

max(2.98× 69− 130)xw + (2.20× 65.9− 110)xo (5.45)
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subject to Constraints 1 – 3:

1) xw + xo ≤ 5
2) xw ≤ 3.01
3) xo ≤ 2.01

Note the addition of the ε perturbation term (≈ 0.01) on the right hand
side of the calibration constraints. The average gross margin from wheat is
$76/acre and oats $35/acre. The optimal solution to the Stage 1 problem
is when the wheat calibration constraint is binding at a value of 3.01 and
Constraint 1 is binding when the oat acreage equals 1.99. The oat calibration
constraint is slack.

Two equations are solved for the two unknown yield parameters (α and
γ). Using the quadratic total land cost function specified in 5.44 and the
first order conditions in equation 5.39, the first equation for the marginal
cost coefficient sets λ2 equal to the difference between marginal and av-
erage cost based on equation 5.43 and derives the calibrated value for γ.

f ′(x̃k)− f̄(x̃k) = λ2k

α + γkx̃k − α− 0.5γkx̃k = λ2k

γk = 2λ2k
x̃k

(5.46)

Equation 5.46 uses the value of the Dual on the LP calibration constraint
(λ2) which is shown in figure 5.1 to be the difference between the average
cost (AC) of the crop and the marginal cost (MC).

The second equation is the average cost for crop ii:

ωi = αi + 0.5γixi

∴ αi = ωi − 0.5γixi

∴ αi = ωi − λ2

(5.47)

The derivation of the two types of Dual value λ1 and λ2, can be shown
for the general case (Howitt, 1995b). The A matrix in 5.31 is partitioned by
the optimal solution into an m×m matrix B associated with the marginal
variables xm, an m × 1 subset of x with inactive calibration constraints.
These activities set the opportunity costs for the m×1 set of binding resource
constraints. The second partition of A is into an m×k matrix N associated
with a k × 1 partition of x, xN of non-zero activities constrained by the
calibration constraints. The equation for λ1 is the usual LP form of:

λ1 = c′mB−1 (5.48)
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The elements of vector xm are the acreage produced in the crop group
limited by the general constraints, and λ1 are the Dual values associated
with the set of m× 1 binding general constraints. Equation 5.48 states that
the value of marginal product of the constraining resources is a function of
the revenues from the constrained crops. Remembering the reduced gra-
dient specification in equation 5.39, the “independent” crops (xk) do not
influence the Dual value of the resource by the decoupling proposition. This
is consistent with the principle of opportunity cost in which the marginal net
return from a unit increase in the constrained resource determines its op-
portunity cost. Since generally the more profitable crops xk are constrained
by the calibration constraints, the less profitable crop group xm are those
that could use the increased resources and hence set the opportunity cost.

Equation 5.49 determines the Dual values on the upper bound calibration
constraints on the crops.

λ2 = −N ′B′−1cm + Ick

and substituting 5.48 gives:
λ2 = Ick −N ′λ1

(5.49)

The Dual values for the binding calibration constraints are equal to the
difference between the marginal revenues for the calibrated crops (xk) and
the marginal opportunity cost of resources used in production of the con-
strained marginal crops (xm). Since the Stage I problem in Figure 5.2 has
a linear objective function, the first term in 5.49 is the crop average value
product of land in activities xk. The second term in 5.49 is the marginal
opportunity cost of land from equation 5.48. In this PMP specification, the
difference between the average and marginal cost of land is attributed to
changing land quality. Thus the PMP Dual value (λ2) is a hedonic measure
of the difference between the average and marginal cost of land, for the cal-
ibrated crops. Analogously to revealed preference, PMP can be thought of
as revealed efficiency based on observed land allocations.

Equation 5.49 substantiates the Dual values shown in Figure 5.2, where
the Duals for the calibration constraint set (λ2) in the Stage I problem
are equal to the divergence between the LP average cost per acre and the
marginal opportunity cost per acre.

The Dual value on land (λ1) is $35 and on the calibration constraint (λ2)
is [41 0]. Using equation 5.45, the λ2 value for wheat, and the base-year
data, the cost function slope for wheat is calculated as:

γw =
2× 41

3
= 27.333 (5.50)
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γw is now substituted into equation 5.47 to calculate the cost intercept
αw.

αw = 129.62− (0.5× 27.333× 3) = 88.62 (5.51)

Using the cost function parameters, the Stage II Primal PMP problem
becomes (see Figure 5.3):

max[(2.98× 69)xw + (2.20× 65.9)xo

− (88.62 + 0.5× 27.333xw)xw − 109.98xo]
subject to xw + xo ≤ 5

(5.52)
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Figure 5.3: One PMP Activity and One LP Activity

A quick empirical check of the calibration to the base values is performed
by calculating the VMP per acre of wheat at 300 acres. If it is close to the
VMP (VAP) of oats and converging, the model will calibrate without the
additional calibration constraints.

The marginal cost per acre of wheat is:

MC(w=3) = 88.62 + 27.333× 3 = 170.619
V MP(w=3) = 2.98× 69− 170.619 = 205.62− 170.619 = 35.001

V MPo = 2.20× 65.9− 110 = 144.98− 110 = 34.98
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The VMP for wheat at 3 acres of $35.01 is marginally above the VMP
for oats ($34.98). Thus, the unconstrained PMP model will calibrate within
the rounding error of this example.

5.3.1 Calibration Using Supply Elasticity Estimates

Since the PMP procedure solves for the marginal cost function it also solves
for the range of supply elasticities based on the marginal costs. However,
as can be seen from equation 5.46, the marginal cost parameter γk depends
on the empirical parameters of λ2 and x̃. The resulting supply elasticity is
not bounded and thus can assume values for a short calibration period that
may be inconsistent with estimates based on a larger representative sample
of crop response. The elasticity of supply is the essential measure of how
the calibrated PMP model responds to policy changes. Accordingly, and
consistent with the philosophy of using the best information available, the
modeler must check the equilibrium elasticities implied by the calibrated cost
functions, and if reliable parameters are available, use the prior information
on elasticities to calibrate the model.

The PMP marginal cost slope is calibrated against prior econometric
estimates, but also reflects the conditions that are present in the base year
model conditions. Modelers should be aware that using an elasticity based
on prior econometric estimates to calculate the adjustment value does not
ensure a positive net return. Net returns over variable costs should be
checked after the adjustment factor is calculated.

The supply elasticity based on prior econometric estimates is defined as:

ηs =
∂q

∂p

P

Q

Using the assumption of a constant per acre yield and the usual marginal
cost supply function specification, the elasticity can be rewritten in terms
of crop land allocations as:

ηs =
∂x

∂mc

P

x∗
or

ηsx
∗

P
=

∂x

∂mc
(5.53)

Since the nonlinear total cost is αx + 0.5γx2 and the supply function
(marginal cost function) is α + γx, the change in marginal cost with output
(γ) is:

∂mc

∂x
= γ ⇒ 1

γ
=

∂x

∂mc
=

ηsx
∗

P
(5.54)
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γ =
P

ηsx∗

The supply elasticity implied by the unrestricted PMP calibration 5.54
is calculated from:

ηs =
P

x∗γ
(5.55)

In the Standard PMP model elasticities are available for all crops and can
be used to calibrate the PMP functions as follows. First, the γ coefficients
are calculated using equation 5.54 and prior estimates of supply elasticities.
Since we have set the slope of the marginal cost function, we have to calculate
the marginal cost function intercept parameter α using λ2 and the average
cost:

αk = ACk + λ2k − γkx
∗
k

The resulting PMP model will calibrate in inputs and outputs, and will
also have elasticities of supply that calibrate to the base data.

5.3.2 Calibrating Marginal Crops

A valid objection to the simple PMP specification in 5.52 is that we assume
an increasing cost of production/acre for the more profitable unconstrained
crops xk, but the marginal crops xm that are constrained by resources are
assumed to have constant production costs per acre.

Calibrating the marginal crops (xm) with increasing cost functions re-
quires additional empirical information. The independent variables, as xk

are termed, use both the constrained resource opportunity cost (λ1) and
their own calibration Dual (λ2) to solve for the yield function parameters
implied by the observed crop allocations (see Figure 5.3). However, the
marginal crops (xm) have no binding calibration constraint, and thus cannot
empirically differentiate marginal and average cost at the observed calibra-
tion acreage, using the minimal LP data set specified.

Clearly some additional data on the marginal cost function for this group
of crops is needed. For cost function calibration, the best additional data
comes from prior estimates of elasticities of supply. Since we are now chang-
ing the opportunity cost of the restricting resources by changing the costs
of the marginal crops, we will have to adjust all the PMP λ2 values. We use
a prior elasticity of supply to calculate the adjustment factor.

Defining the adjustment factor Adj = MC − AC at x̃m. It is the addi-
tional cost that we need to add to the LP average cost to obtain a nonlinear
cost function. The Adj value should be thought of as the PMP term for
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the marginal activities, but since it increases the marginal opportunity of
binding resources, it will also change all the other non-marginal PMP values.

Adj =
1
2
γx∗ =

P

2ηs
(5.56)

Defining the slope from equation 5.54 and the prior elasticity, yields the
second term in 5.56.

Now we redefine the PMP values for the non-marginal crops as:

λ̂2i = λ2i + Adj

We can now calculate the PMP cost function values of α and γ using
the adjusted values and the average costs from the data set.

Returning to the example in equation 5.52 and Figure 5.2, the Stage 1
calibrated problem is run exactly as before. One of the important pieces
of information from the optimal solution of the Stage 1 problem is which
activities are in the xk and xm groups. The modeler is unlikely to know this
beforehand.

In the example, let us assume that the a priori information on the elastic-
ity of supply for oats is that it is 2.25. Using equation 5.56 for the adjustment
term (Adjm), the adjustment term for Oats is:

Adjo = λ̂2o = 2.20× 65.9/2× 2.25 = 28.996 (5.57)

Note that this adjustment factor is per acre, so instead of the price per
unit product used in the normal elasticity formula, we have to use total
revenue (price × yield) per acre, hence (2.20 × 65.9) which is the price of
oats times the yield per acre for oats.

This Adj value now plays the role of λ2 for the marginal crops (Oats
in this example). The residual Dual value on land set by the oat cropping
activity is reduced accordingly by 28.996 from 35 and becomes 6.004.

The nature of marginal crops would lead one to expect that they would
have a highly elastic supply. This is a factor to be considered carefully, as
from equation 5.56, it can be seen that there is no bound on the value of
Adj. This means that if small elasticities are used, they can result in large
Adj values, that in turn, can lead to negative shadow values and resulting
calibration problems.

The PMP Dual on Wheat (λ2w) must also be increased by this same
amount to ensure the first order conditions hold. The new value for λ̂2w is:

λ̂2w = 41.0 + 28.996 = 69.996 (5.58)
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The calculations for the cost coefficients in 5.50 and 5.51 are now applied
to all activities, both marginal (xm) and independent (xk). Note that the
adjusted λ̂2 values are used for the independent activities and the Adj value
based on the prior data is used for the marginal crops.

The PMP problem given the information on marginal yields for the oat
crop is re-defined using the new λ̂2 values for both Wheat and Oats in
equations 5.50 and 5.51 and now becomes (also see Figure 5.4):

max (2.98× 69)− (59.624 + (0.5× 46.664)xw)xw (5.59)
+ (2.20× 65.9− (80.984 + (0.5× 28.996)xo))xo

subject to xw + xo ≤ 5
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Figure 5.4: PMP Calibration on All Crops.

The calibration acreage can be checked by calculating the VMP for each
crop at the calibration acreage of x̃w = 3 and x̃o = 2. This is:

V MPw|x̃(w=3)
= 2.98× 69− (59.624 + 46.664× 3) = 6.004

V MPo|x̃(o=2)
= 2.20× 65.9− (80.984 + 28.996× 2) = 6.004

(5.60)
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Since the VMP’s are equal to each other and also equal to the new
opportunity cost of land, the PMP model with the new cost functions will
calibrate arbitrarily close to the base year acreage.

The resulting model will calibrate acreage allocation and input use, and
the objective function value precisely. However, the Dual value on land will
be lower reflecting the additional, and presumably more accurate, data on
the marginal cost of the marginal crops obtained through the elasticities of
supply.

5.4 Calibrating Production and Intermediate Ac-
tivities

5.4.1 A Crop and Livestock Farm Model

The agricultural models that have been used as examples for calibration
have been exclusively simple cropping models where the product is pro-
duced and sold directly. However, many agricultural enterprises or regional
aggregations produce a mixture of crops for direct sale, and livestock that
are also sold. In addition, crops such as pasture and fodder crops are grown
to be fed directly to livestock. A farm manager has the option of selling,
purchasing, or producing intermediate feed products. We define the activ-
ities of purchasing and selling products as intermediate activities, as they
do not directly involve the productive resources of the farm. Farmers are
small agents in the commodity markets from which they buy and sell, and
thus are probably price takers facing fixed market prices. If follows that
intermediate activities should be modeled as linear constant cost or price
activities, unless there is good empirical evidence to the contrary. A second
extension to the basic crop model is that the calibration unit will differ for
different crop and livestock activities. In the basic crop model we used a
unit of land as the calibration unit, however for a more general model the
calibration unit varies with the activity. The model builder has to specify a
meaningful unit for the activity such as an acre of land, a cow, a sheep , or
for more complex livestock operations, an animal unit year index can sim-
plify the specification. The general model specification starts with defining
the activities into two subsets of production processes, and transfer pro-
cesses. Revenues and costs are defined for both production processes and
transfer processes, but for some production processes the revenues may be
defined as zero since they are transferred the to appropriate transfer con-
straint for reallocation to other productive processes. A typical example is
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the production of hay that uses farm inputs, but is not sold directly, but is
fed to an animal production process. In this case, hay would be assigned
its share of production costs, but its marginal revenue would be defined as
zero. However a hay transfer constraint shows the required hay for livestock
production, and enables the manager to avoid purchasing it by producing
it on the farm. Thus the production of hay would have an opportunity cost
marginal revenue equal to the price of hay. Transfer activities also have
different revenues and costs. An activity that purchased hay would involve
a cost, but not revenue, likewise the sale of hay will result in revenue, but
no direct costs. The section 2.10 in chapter 2 shows how to define the linear
linkage constraints that are used to transfer between activities. An example
of a hay transfer constraint is used to show the linear specification. The
constraints are defined for each transfer activity such as working capital,
hay, grain, or labor when there is a mix of family and hired labor used on
the farm. Only the productive activities are calibrated in the model. Thus
the set of calibration activities is only defined over the production subset.

maxx mr′x− ac′x (5.61)
subject to Axp ≤ bp, (5.62)

Ixp ≤ x̃p (5.63)
Tx = bt xp & xt ≥ 0 (5.64)

Note that the resource and calibration constraints are only applied to the
productive activities as before, but the matrix of transfer constraint coef-
ficients links both the production activities (xp) and the transfer activities
(xt). The Midwest Farm Gams template program illustrates how the pro-
duction and transfer activities interact and are calibrated. The activities
are growing corn,wheat, soybeans, hay, and fattening cattle. Clearly the
calibration units differ. The four crop growing activities are calibrated to
the land used, while the cattle fattening activity is calibrated to the number
of cattle fattened. There are two inventory constraints for hay and corn.
Hay is not sold and is fed to the cattle, but hay can be purchased at the
going market price. Corn is more complex as it can be bought, grown, sold
or fed to cattle. The amount of hay and corn that each steer needs to fat-
ten is defined as a fixed input requirement, since we are still assuming a
linear production technology. In the Midwest model we assume that land is
the only resource constraint, although a constraint on the number of cattle
that can be housed should also be included. Calibration is defined by prior
estimates of supply elasticities and the observed cropping and livestock ac-
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tivity levels in the base year data set. Since the productive activities are
calibrated, the purchase and sale levels for hay and corn will also calibrate
to the observed base levels. Policy parameterization of the model will result
in the production activities changing with respect to their elasticities, and
the levels in the transfer activities responding accordingly. To see this try
loading the Midwest Gams template and increasing the marginal revenue
for cattle parametrically. Note the changes in cattle, hay grown, and corn
grown and sold.

5.5 Policy Modeling with PMP

The purpose of most programming models is to analyze the impact of quan-
titative policy scenarios which take the form of changes in prices, technology,
or constraints on the system. The policy response of the model can be char-
acterized by its response to sensitivity analysis and changes in constraints.

Advantages of the PMP specification are not only the automatic cali-
brating feature, but also its ability to respond smoothly to policy scenarios.
Paris (1993) shows that the input demand functions and output supply
functions obtained by parameterizing a PMP problem satisfy the Hicksian
conditions for the competitive firm. In addition, the input demand and
supply functions are continuous and differentiable with respect to prices,
costs, and right hand side quantities. (At the point of a change in basis
the supply and demand functions are not differentiable.) The continuity of
input demand and output supply functions is in contrast to LP or stepwise
problems. In linear problems the Dual values, and sometimes the optimal
solution, are unchanged by parameterization until there is a discrete change
in basis, when they jump discontinuously to a new level.

The ability to represent policies by constraint structures is important.
The PMP formulation has the property that the nonlinear calibration can
take place at any level of aggregation. That is, one can nest an LP sub-
component within the quadratic objective function and obtain the optimum
solution to the full problem. An example of this is used in technology selec-
tion where a specification that causes discrete choices may be appropriate.
Suppose a given regional commodity can be produced by a combination of
five alternative linear technologies, whose aggregate output has a common
supply function. A PMP model can calibrate the supply function while a
nested LP problem selects the optimal set of linear technology levels that
make up the aggregate supply (Hatchett et al., 1991).

Since the intersection of the convex sets of constraints for the main prob-
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lem and the convex nested sub-problem is itself convex, then the optimal
solution to the nested LP sub-problem will be unchanged when the main
problem is calibrated by replacing the calibration constraints with quadratic
PMP cost functions. The calibrating functions can thus be introduced at
any level of the linear model. In some cases, the available data on base
year values will dictate the calibration level. Ideally, the level of calibration
would be determined by the properties of the production functions, as in the
example of linear irrigation technology selection. The basic PMP approach
does not replace all linear cost functions with equivalent quadratic specifi-
cations, but only replaces those that data or econometric estimates suggest
are best modeled as nonlinear.

If the modeler has prior information on the nature of yield externalities
and rotational effects between crops, they can be explicitly incorporated by
specifying cross crop yield interaction coefficients in equations 5.42 and 5.43.
The PMP yield slope coefficient matrix (Γ) is positive definite, k × k, and
of rank k. Without the cross crop effects the matrix is diagonal.

Resource using activities such as fodder crops consumed on the farm
may be specified with zero valued objective function coefficients. Where
an activity is not resource using, but merely acts as a transfer between
other activities, there is no empirical basis or need to modify the objective
function coefficients. An application of PMP to an example of joint crop
and livestock production is developed in a later chapter.



Chapter 6

Nonlinear Duality, Prices,
and Risk

6.1 Duality in Nonlinear Models

6.1.1 Deriving the Dual for Nonlinear Problems

The Standard PMP Problem defined in chapter 5 with nonlinear cost func-
tions for all crops is concisely stated as:

maxx mr′x− α′x− 1
2x′Γx

subject to Ax ≤ b
(6.1)

Given a nonlinear Primal problem, the Dual problem can be derived
using the following steps:

1. Set up the problem as a Primal Lagrangian. (Here a maximization).

2. Apply the first Kuhn Tucker condition, ∂L
∂x ≤ 0, which yields the con-

straints for the Dual problem.

3. Apply the second Kuhn Tucker condition,
(

∂L
∂x

)
x = 0. Rearrange

the equation to obtain λ′Ax on the left hand side. Substitute the
expression for λ′Ax back into the Primal objective function. Multiply
out and simplify to obtain the Dual objective function.

The logic is that by taking the Primal first order conditions and objec-
tive function, and by substitution, expressing them in terms of prices
and costs, we obtain the equivalent Dual problem.

95
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Applying this procedure to equation 6.1, we get the following results:

1. Form a Lagrangian for the problem:

L = mr′x− α′x− 1
2x′Γx + λ′(b−Ax) (6.2)

∂L

∂x
= mr′ − α′ − x′Γ− λ′A

2. Apply Kuhn Tucker (KT) Conditions:

∂L

∂x
≤ 0

(
∂L

∂x

)
x = 0

∂L

∂x
= mr′ − α′ − x′Γ− λ′A ≤ 0 (6.3)

∂L

∂x
= mr − α− Γx−A′λ ≤ 0 . . . 6.3 transposed

A′λ ≥ mr − α− Γx (6.4)

Note that equation 6.4 states necessary conditions in terms of prices,
variable costs and imputed costs and thus becomes the Dual problem
constraint set.

3. Now we derive the Dual objective function. Using the second KT
condition ∂L

∂x x = 0 yields the following condition:

(mr′ − α′ − x′Γ− λ′A)x = 0
∴ mr′x− α′x− x′Γx− λ′Ax = 0 (6.5)

Since, the constraint holds exactly at the optimum, we know:

mr′x− α′x− x′Γx = λ′Ax (6.6)

Now substitute this into the Lagrangian (6.2) to get:

L = mr′x− α′x− 1
2
x′Γx− (mr′x− α′x− x′Γx) + λ′b (6.7)

cancelling terms and subtracting the quadratic terms gives:

L = λ′b +
1
2
x′Γx (6.8)

The Dual Problem to the PMP production equation 6.1 is:

min λ′b + 1
2x′Γx (6.9)

subject to A′λ ≥ mr′ − α′ − x′Γ, λ ≥ 0
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6.1.2 The Economic Interpretation Nonlinear Dual
Problems

The Dual Objective Function

Note that the Dual objective function has both Primal and Dual variables
in it. The part with dual variables is familiar.

λ′b (6.10)

Equation 6.10 has the same interpretation as in LP, i.e., the opportunity
cost of firm’s resources b. What about the 1

2x′Γx term?
The producer’s surplus from producing a quantity x of some crop is the

area above the marginal cost function and below the marginal revenue for
x, or the total revenue from producing x minus the total cost. Ignoring the
shadow values of constraining resources for simplicity, producer’s surplus is:

Producer surplus = mr′x− α′x− 1
2
x′Γx (6.11)

but at the unconstrained optimum output marginal cost is equal to the
marginal revenue (mr), therefore at the optimum we can substitute mr′ =
α′ + x′Γ. Using this in 6.11 yields:

Producer surplus = (α′ + x′Γ)x− α′x− 1
2
x′Γx =

1
2
x′Γx (6.12)

Therefore the PMP Dual objective function in 6.9 minimizes the sum of
imputed resource value and producer’s surplus

The Dual Constraints

A′λ ≥ mr′ − α′ − x′Γ (6.13)

Where A′λ is an n×1 vector of marginal opportunity costs of production
of the vector of outputs x. [A′λ+α′]+ [x′Γ] is [Marginal opportunity cost]+
[Marginal cash cost], and mr′ is an n× 1 vector of marginal revenue.

Therefore the PMP Dual Constraint says: “The sum of marginal costs
of production must be equal to or greater than the marginal revenue for
all outputs x.” This is the “free lunch” theorem again. That is, if someone
offers to sell you a Rolex for $19.95, there is probably something wrong with
the deal.
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Nonlinear Dual Values for Resources

For the binding constraints, substitute the basis matrix B (invertible) into
equation equation 6.13, for A (non-invertible since not square). This gives
a formula for λ on the binding constraints. Note that, from complementary
slackness, λ = 0 for the slack constraints.

B′λ = mr′ − α′ − x′Γ (6.14)

Transposing 6.14 and inverting B yields:

λ′ = B−1mr −B−1α−B−1Γx (6.15)

From 6.15 we see that in nonlinear programming problems, λ is a continuous
function of x, unlike LP where the Dual vector is λ = mr′BB−1

6.1.3 Parameterizing Nonlinear Problems

Since the Dual values for the Primal Linear programming problem are:

λ = cBB−1 (6.16)

This implies that a particular Dual value λi of bi is constant until the
basis B−1 changes (Note that cB is a vector of linear net revenues).

The quadratic Primal PMP problem, however, has a Dual of:

λ′ = B−1mr −B−1α−B−1Γx (6.17)
or λ′ = B−1(mr − α)−B−1Γx (6.18)

where α and Γ are the intercepts and slopes of the cost functions for xi, and
the vector mr is defined here as the constant marginal revenue/unit from
producing x.

The Dual λi is now a linear function of x, therefore as bi changes and x
changes, the Dual will change. However, the “intercept” B−1(mr − α) and
the “slope” B−1Γ of the Dual function will change when the basis changes.

Condensing the notation by defining µ ≡ B−1(mr − α) and ξ ≡ B−1Γ,
the Dual for the monopoly problem becomes:

λ = µ + ξx (6.19)



6.1. DUALITY IN NONLINEAR MODELS 99

b

λi

Figure 6.1: Parameterization of bi

6.1.4 An Empirical Example

The following simple Quadratic problem illustrates the nonlinear dual (also
see Figure 6.2):

max φ′x− 1
2x′Dx

subject to Ax ≤ b, x ≥ 0

whereφ′ = [8 6 4], D =




4 2 2
2 4 0
2 0 2


 , A = [1 1 2]

and b is parameterized over the values 0 → 4. As one would expect from the
equations 6.18 and 6.19, the quadratic Dual is a continuous linear function
of bj within a basis, since x = B−1b, and from 6.19 we see that lambda is
a continuous function of x. With a change of basis, the slope of the linear
function changes discretely. Equation 6.19 shows that both the intercept
and slope of the Dual value function changes with a change in the basis B.
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Figure 6.2: QP Parameterization - Plot of the Dual value and RHS

6.2 Incorporating Endogenous Supply and Demand
Prices

Linear Programs assume constant prices and costs. In reality marginal costs
are rarely constant and output prices are only constant for individual firms.
Analysis which is performed on a regional, national, or commodity basis
should have prices that change with changes in the solution.

6.2.1 Case I: Changes in Output Price Only

Assuming that we are given, or have estimated the parameters of a linear
demand function, we can relate the quantity of output demanded q with its
price p as q = a + Sp where p and q are vectors of prices and quantities;
the parameter a is a vector of positive slope intercepts; and S is a negative-
definite matrix of demand slopes and cross demand effects.

Note: A matrix S is negative definite if the scalar product k′Sk < 0 for
all non-zero values in a conformable vector k.

Since we are modeling the aggregate outcome of individual farmer be-
havior, we are interested in the opposite effect — i.e., how output levels q
affect the price received. This assumption implies that farmers are so small
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in their individual output that they are price takers. In addition, for most
agricultural crops, the farmer has to commit to purchasing the inputs before
it is clear what the price will be at harvest. Therefore we invert the demand
function to get it in a price dependent form.

p = −S−1a + S−1q

or . . . p = φ + Dq whereφ ≡ −S−1a andD ≡ S−1

Assuming a constant yield per acre for the moment, we can replace the
output quantity (q) by the number of acres allocated to a crop (x) and
substitute the resulting expression for price into the objective function. The
price endogenous objective function differs with the assumptions on the
objectives of the decision maker. The two main specifications are (i) the
objectives of a monopolist and (ii) the objectives of a perfect competitor:

A Monopolist Objective Function

Assume a monopolist faces a set of linear, price-dependent demand functions
for the vector of outputs x and where D is a symmetric negative-definite
matrix results in.

Demand System p = φ + Dx (6.20)

If the monopolist has a constant marginal cost of production vector c,
the net revenue objective function will be:

maxJ = p′x− ω′x (6.21)

Substituting in 6.20 for p gives:

max J = (φ + Dx)′x− ω′x (6.22)
ormax J = φ′x + x′Dx− ω′x (6.23)

subject to Ax ≤ b, x ≥ 0

1. Unconstrained Equilibrium
Set the derivative ∂J

∂x = 0 and transpose it. In this problem there are
no binding resources (the constraints are all slack), therefore:

Marginal Revenue = Marginal Cost
φ + 2Dx = ω (6.24)

Vector of Marginal Revenues = Vector of Marginal Costs
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Also, monopoly rent = total revenue - total cost. Therefore:

Monopoly rent = p′x− ω′x
= (φ + Dx)′x− (φ + 2Dx)′x

Monopoly rent = −x′Dx

We know from 6.20 that p = φ + Dx and ω = φ + 2Dx from 6.24
in addition, we know that a monopolist produces where MR = MC.
Also note that x′Dx is a positive scalar value since D is a negative
definite matrix.

2. Constrained Monopoly Equilibrium
The monopolist is now constrained by a vector of fixed inputs b and
the linear technology matrix A. The Lagrangian now becomes:

maxJ = φ′x + x′Dx− ω′x + λ′(b−Ax) (6.25)

The first order optimum conditions are:

∂J ′

∂x
= φ + 2Dx− ω −A′λ set= 0 (6.26)

φ + 2Dx− ω = A′λ (6.27)

That is, the difference between the marginal revenue and marginal cost
of an output is the sum of shadow values of the inputs used to produce
it. This shows that even monopolists exhaust the rents from a fixed
input.

The Perfect Competition Objective Function

1. Unconstrained Perfect Competition

The unconstrained perfectly competitive equilibrium condition is de-
fined as where:

Price = Marginal Cost
φ + Dx = ω (6.28)

The perfectly competitive objective function is obtained by integrating
the optimal marginal condition from 6.28, namely:

∫
(φ + Dx− ω) dx = φ′x +

1
2
x′Dx− ω′x
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Accordingly, we specify a different objective function that satisfies the
marginal conditions for unconstrained perfect competition.

max z = (φ +
1
2
Dx)′x− ω′x (6.29)

A good question is: Why is the one half in the objective function mul-
tiplying the slope parameter? The answer is that a Perfectly Com-
petitive market is defined by its marginal conditions, so to correctly
define the objective function, we have to start with the marginal con-
ditions and derive the objective function. Essentially we have to ask,
what objective function would an optimizing decision maker have had
to have, to result in the perfectly competitive first order conditions?
We therefore start with the marginal conditions and integrate them to
obtain the objective function.

2. Constrained Perfect Competition

max z = φ′x + 1
2x′Dx− ω′x (6.30)

subject to Ax ≤ b, x ≥ 0

The perfectly competitive objective function also maximizes the sum
of consumer’s surplus and producer’s quasi-rent (producer surplus)
Initially, assume an unconstrained solution for simplicity.

z = (φ + 1
2Dx)′x− ω′x (6.31)

= (φ + Dx)′x− ω′x− 1
2x′Dx (add and subtract

1
2
x′Dx)

= p′x− ω′x− 1
2x′Dx (substitute p from 6.28)

= (p− ω)′x− 1
2x′Dx

Since Price minus Variable Cost is defined as producer’s surplus or
“Quasi Rent”, the left-hand-side term (P −ω)′x is equal to producer’s
surplus. Since the marginal cost is defined as a constant value “ω”,
the producer’s surplus only occurs because of the constraint on the
amount of product sold.
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What about the right-hand-side term, 1
2x′Dx?

−1
2
x′Dx = 1

2x′(−Dx) (6.32)

= 1
2x′(φ− φ−Dx) (add and subtractφ)

= 1
2x′(φ− p∗) (substitute p∗ from 6.28)

−1
2
x′Dx = consumer’s surplus (see Figure 6.4)

Thus equation 6.28 satisfies competitive marginal conditions and max-
imizes aggregate net social benefits, which are usually defined as the
sum of producer and consumer surplus.

SUMMARY

Unconstrained Perfect Competition Constrained Perfect Competition
Producer Surplus Producer Surplus
(p.s.) = 0 (p.s.) = (pi − ωi)xi

Consumer Surplus Consumer Surplus
(c.s.) = 1

2(φi − pi)xi (c.s.) = 1
2(φi − pi)xi

6.2.2 Case II: Aggregate Perfect Competition — Endoge-
nous Prices and Costs

In this specification the marginal costs are no longer constant and there is a
linear supply function (Marginal Cost) as well as endogenous demand prices.

Given the price dependent demand function and a linear marginal cost
(supply) function below:

Price = φ + Dx D is negative definite
Marginal Cost = α + Γx Γ is positive definite.

(6.33)

We integrate equation 6.33 and obtain the unconstrained perfectly com-
petitive problem with supply functions as:

maxJ = φ′x + 1/2x′Dx− α′x− 1
2x′Γx (6.34)

∂J
∂x = φ′ + x′D − α′ − x′Γ set= 0 (6.35)

As expected for perfect competition, price = marginal cost.
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The Interpretation of the Objective Function

Trick #1. Add and subtract 1/2x′Dx and 1/2x′Γx to 6.33 to yield:

J = φ′x + x′Dx− α′x− x′Γx− 1/2x′Dx + 1/2x′Γx (6.36)
J = (φ + Dx)′x− (α + Γx)′x− 1

2x′Dx + 1
2x′Γx (6.37)

But from 6.35, we see that the first two terms cancel out (Price =
Marginal cost) at the optimum. Therefore at the optimum the objective
function is:

J = −1/2x′Dx + 1/2x′Γx (6.38)

From 6.32, we see that the first term (1
2x′Dx) is equal to consumer’s sur-

plus. The second term is changed by trick #2: factor out x and add/subtract
α to yield:

1
2
x′Γx = 1

2(α + Γx− α)′x (6.39)

= 1
2(MC − α)x

Since price equals marginal cost, 1
2x′Γx is one-half the area above the

marginal cost intercept and below the price line as shown in Figure 6.5.
Note that this term and logic is identical to the original nonlinear PMP
Dual derivation at the beginning of the chapter.

6.2.3 Case III: Inter-regional Trade Models

Empirical trade models can be solved using this same objective function
expanded to several regions. The effect of transport costs and tariffs can
be added to the supply functions to solve for changes in trade policies or
conditions. The seminal paper in this area is Takayama and Judge (1964).

There are several different ways of setting up the inter-regional trade
problem, but the simplest method to show is to extend the quantity depen-
dent supply-demand concept above to J regions that are linked by trade
which results in a trading cost of cij per unit commodity traded from region
i to region j. The resulting problem solves a wide range of trade problems.
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Price Dependent Optimal Inter-regional Trade Specification

(6.40)

maxF (·) =
J∑

j=1

(φj +
1
2
dj xdj) xdj −∑I

i=1(αi + 1
2γi xsi) xsi (6.41)

−∑
i

∑
j cijxij (6.42)

subject to xsi =
∑

j

xij xdj =
∑

i xij , and xij ≥ 0 (6.43)

Note that the only constraints are those needed to aggregate the indi-
vidual demands xdj and supplies xsi for the aggregate regional demand and
supply functions.

The objective function maximizes the definite integral under the demand
and supply function for each region in terms of the post trade quantities
demanded and supplied in each region. The costs of trading between regions
is deducted to yield the net social benefit of trade shown in the two region
diagram. The adding up constraints ensure that the quantities demanded
and supplied in each region balance.
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The specification of the regional trade problem is an excellent illustration
of the efficiency and beauty of Dual specifications. The Primal specification
above solves optimally, but it is more complicated than needed. Since the
decision variable is the quantity of product traded between regions, the cost
of trading is explicitly defined in the objective function, and the aggregate
quantities are generated by the summing up constraints.

An alternative to using price dependent supplies and demands, is to for-
mulate the Dual of the price dependent problem that can be termed the
quantity dependent form, since it uses the standard quantity dependent de-
mands and supplies. The quantity dependent specification solves the prob-
lem with two simple equations that use the standard quantity dependent
demand and supply functions, and instead of solving for i × j quantities
traded, the price based model solves for the i + j set of equilibrium prices.

The two equations are the producer and consumer surplus objective func-
tion, and the first order price condition for trade. Returning to the original
price dependent demand 6.41 we have:

xdj = aj + sj pdj

We also define a similar quantity dependent supply function:

xsi = bi + gi psi

The Quantity Dependent Interregional Trade Problem

maxF (·) =
J∑

j=1

(aj +
1
2
sj pdj)pdj −

I∑

i=1

(bi +
1
2
gi psi)psi

subject to pdj − psi − cij ≤ 0

Note that in the quantity dependent formulation, the constraints are the
Kuhn-Tucker conditions for each possible trade. They contain the aggregate
demand and supply prices, but also the trade specific transport costs (cij).

The quantities traded are generated as the Dual values to the (i × j)
interregional pricing constraints. This is an example of the complementary
slackness principle working for us. From the complementary slackness prin-
ciple we know that if the trade price constraint is slack, that is the supply
and transport cost exceed the demand price, then the quantity traded will be
zero. The corollary is that the Dual value, when the trade price constraint
is binding, is the quantity traded. Note that all the information from the
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optimal solution of the Primal problem is also obtained from solving the
simpler Dual problem.

An empirical example of the GAMS code for these problems is found in
the Gams Templates on the class webpage. By running both problems it
can be seen that the results are identical.

6.2.4 Calibrating Demands Using Elasticity Estimates

Often the modeler is faced with the need to derive parameters for demands
when the only data available is the equilibrium price and quantity in the
base year for the model, and an estimate of the elasticity from an previous
econometric study. Similar to the PMP development in the previous chapter,
there is a very simple derivation that enables one to calibrate the slope and
intercept coefficients using the elasticity. Assume that a demand can be
specified as linear in the price dependent form used above.

pd = φ + dx

Recall that demand elasticity is defined as:

η =
∂q

∂p

p

q

If you have a base value for q = 2.9, p = 173, and η = −0.6 the values can
be substituted in to the above formula to solve for the slope of the demand
function:

−0.6 =
∂q

∂p

173
2.9

The slope of the price dependent linear demand function that results is:

∂p

∂q
= −99.42

Substituting this value back into the original price dependent demand
equation results in an intercept value of 461.3.

The resulting calibrated demand curve that will yield a price of $173 at
a quantity of 2.9 and a point elasticity of -0.6 has the form:

pd = 461.3− 99.42q

The concept of calibrating models against prior econometric elasticity
estimates is well illustrated in the Central Valley Production Model (CVPM)
that has been developed by S. Hatchett in the consulting firm CH2M -
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Hill. The CVP model is currently used to analyze the economic impacts of
large reallocations of water between agricultural, environmental and urban
interests in California. The model use both demand, supply and substitution
elasticities to reflect the economic impacts of changes in water availability
and cost in California.

6.3 Incorporating Risk and Uncertainty

In our problem specifications we have implicitly assumed that the param-
eters in the problem are known and constant. For example, the objective
function c′x assumes a deterministic vector c of prices or costs. We can
make this more realistic in two ways:

1. Assume the elements of c are not known with certainty, but they are
stochastic with known distributions.

c ∼ N(c̄,Σc)

where Σc is an n× n variance/covariance matrix of revenues.

2. The decision maker’s objective function values both the expected re-
turn and its variance.

Question:
If the vector of net revenues c is distributed c ∼ N(c̄, Σc), what is the
distribution of the objective function c′x, where x is a non-stochastic vector?

Answer:
Since x is a deterministic linear operator;

Expected Value of c′x = E(c′x) = c̄′x.
Variance of c′x = E[c′x− E(c′x)]2

V ar(c′x) = E{[c′x− E(c′x)]′[c′x− E(c′x)]} Inner product
= E{x′[c−E(c)][c−E(c)]′x} Inner product of an outer product
= x′E{[c−E(c)][c−E(c)]′}x Take expectation of stochastic terms
= x′Σcx by covariance matrix definition

Therefore, if c ∼ N(c̄, Σc) then c′x ∼ N(c̄′x, x′Σcx) where x is determin-
istic.

If the decision maker is risk neutral, the objective function can be spec-
ified by substituting c̄′ for c′. More frequently, the decision maker is risk
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averse. If the degree of aversion to income variance can be measured by a
parameter ρ, then the problem becomes:

max z = c̄′x − ρ x′Σcx

↑ ↑
expected revenue vector variance of revenue

subject to Ax ≤ b, x ≥ 0

6.3.1 The Effect of Uncertainty and Risk Aversion

If there is a nonlinear cost of risk, it will have several different effects on the
optimal solution of the problem.

• The optimal solution will show more diversification to offset risk.

• Since the problem is no longer linear in x, some xj may have interior
optima and will not be restricted by binding constraints. In this case,
there will be more xj activities than constraints.

• Note that ρ is a scalar, since the variance of a vector product (c′x) is a
scalar. ρ measures the cost of risk to the decision maker. The variance
of the return from the portfolio x′Σcx and the expected return c̄′x are
both changed by changing the proportions of xi in the portfolio.

The point is demonstrated by focusing on a single xi, and denoting the
sum vector of derivatives that result from the covariance by the short hand
expression ∂(var)

∂xi
.

∂z

∂xi
=

∂(c̄′x)
∂xi

− ρ
∂(var)

∂xi

set= 0

ρ
∂(var)

∂xi
=

∂(c̄′x)
∂xi

∴ ρ =
∂(c̄′x)
∂xi

∂xi

∂(var)
=

∂(c̄′x)
∂(var)

=
1
λ

ρ is equal to the marginal rate of tradeoff between expected income and
variance at the optimum.
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6.3.2 Measuring Risk Aversion- E/V Analysis

The risk aversion parameter can be calculated for an individual by solv-
ing the following problem, termed an E/V problem since it minimizes the
variance of revenues, subject to a pre-specified expected revenue:

min v = x′Σcx

subject to c̄′x ≥ e∗

Where: x′Σcx = variance of revenue, c̄′x = expected revenue and e∗ =
the value chosen for the minimum expected revenue.

Expressing this problem as a Lagrangian:

L = V ar + λ(e∗ − c̄′x)
∂L

∂xi
=

∂(var)
∂xi

− λ
∂(c̄′x)
∂xi

set= 0

∴ λ =
∂(V ar)
∂(c̄′x)

=
1
ρ

In other words, the risk aversion parameter ρ = 1
λ , where λ = opportunity

cost of constraint when you minimize the variance of the objective function.
By parameterizing the model over a range of values for e∗ , we can gen-
erate “E/V” frontiers that show those output combinations that give the
best combination of expected revenue (E) and variance of revenue (V). See
Figure 6.6.

The E/V frontier is generated in two steps:

1. Min var(c′x) s.t. c̄′x ≥ e∗ for a range of e∗ values.

2. Plot results.

A simple example of the Gams code for the E/V problem is found in the
Gams templates on the class webpage.

Note: There is a linear approximation to the mean/variance objective
function called MOTAD (see Hazell and Norton (1986, 86-90)). With the
growth in nonlinear algorithms and computing power, this linear approxi-
mation is rarely needed.
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Figure 6.6: E/V Frontier

6.3.3 Uncertainty in the Constraints: Chance Constrained
Programming

The constraints of a problem sometimes are not known with certainty. Often
the quantity available of input resources (bi) is uncertain, for farming this
may be reflected by the distribution of growing season length, rainfall or
seasonal labor availability. The aij technological coefficients may also be
stochastic, but this more complex case is set aside for the moment.

Case: A Single Right Hand Side Value bi is Normally Distributed

Two assumptions are required in this specification.
First: Some or all of right-hand-side bi values are stochastic. Their distri-
bution is known.

Second: The problem decision maker has specified that the problem
solution must have the uncertain constraint satisfied for a known proportion
(1 − α) of the time. That is the probability that the constraint is satisfied
is specified at a particular level.
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Probability Review

Any normal random variable can be transformed to a variable that has a
Standard Normal Distribution, ∼ N(0, 1), whose cumulative probabilities
are calculated and tabulated in the z distribution, i.e.:

bi ∼ N(b̄i, σ
2
bi

) ⇒ bi − b̄i

σbi

∼ N(0, 1)

.
Also the probability that a z-distributed random variable exceeds a spec-

ified value is equal to one minus the cumulative probability at that value.

Z Table Review

Z tables are usually set up so that:

• They only tabulate half the distribution, so you have to add or subtract
1
2 from the cumulative probability.

• They give the cumulative probability in the “tail” of the distribution.

If the variable zi is distributed:

zi ∼ N(0, 1) (6.44)

That is, zi is distributed with a standard normal distribution, and Prob{zi ≥
Q} ≥ α holds only if Q ≤ kα and where the cumulative probability (α) is the
area under the curve (density function) in the tail beyond kα. See Figures 6.7
and 6.8

The Problem

Given the problem:

max c′x
subject to Ax ≤ b

(6.45)

the ith row in the constraints is written using summation notation for
simplicity:

n∑

j=1

aijxj ≤ bi (6.46)
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But if bi is stochastic and we want this constraint to hold with probability
(1- α), where α is defined as the critical region, it is rewritten as:

Prob



bi ≥

n∑

j=1

aijxj



 ≥ 1− α (6.47)

This is the probability that the constraint is slack, or just holds. Note
that the right hand side of the expression in the brackets aijxj is determin-
istic but changes with changes in x.

Step 1 If we require the probability that a normally distributed random
variable will be equal to or bigger than the specified value (1- α),
we need to calculate a value where cumulative probability is α, our
specified level. It is quick and convenient to convert the distribution
to an equivalent standard normal and look up the probabilities in a
table.

0k�

α 1-α

Figure 6.7: Z distributions and critical regions

Step 2 Convert the normally distributed bi to an equivalent standard nor-
mal distribution, as above. bi is “standardized” to:

zi =
bi − b̄i

σbi

(6.48)
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0k�Q 0k� Q

Figure 6.8: Left: Low Q Value where Prob{zi ≥ Q} > (1 − α) and Right:
High Q Value where Prob{zi ≥ Q} < (1− α).

Since we want to put this standardized value into constraint 6.46 on the
left hand side,we have to perform the same bi standardization trans-
formation on the other side of the constraint (

∑n
j=1 aijxj). Applying

the transformation to both sides, constraint 6.46 is rewritten for the
standard normal distribution as equation 6.47. Note that the left-hand
term in the brackets is a random variable, while the right-hand term
is deterministic.

Prob

(
bi − b̄i

σbi
≥

∑n
j=1 aijxj − b̄i

σbi

)
≥ (1− α) (6.49)

Notes

• bi−b̄i
σbi

∼ N(0, 1). That is, it has a standard normal distribution.

•
∑n

j=1 aijxj−b̄i

σbi
is composed of fixed and known parameter values

and thus is equivalent to the z value “Q” used above.

• From Step 1 and equation 6.47, we see that Prob {zi ≥ Qi} ≥
(1 − α), holds only if Qi ≤ kα. Therefore, equation 6.49 only
holds if: ∑n

j=1 aijxj − b̄i

σbi
≤ kα (6.50)

Step 3 Multiplying out (6.50), we see that (6.49) only holds if:

∑n
j=1 aijxj − b̄i ≤ kασbi (6.51)

rewritten as
∑n

j=1 aijxj ≤ b̄i + kασbi (6.52)



118 CHAPTER 6. NONLINEAR DUALITY, PRICES, AND RISK

An intuitive explanation is to think of kασbi as a risk adjustment factor
that changes the probability of the constraint binding. For example,
if kασbi = 0, the constraint would bind 50 percent of the time.

Notes

• The left hand side is the familiar Ax constraint.

• The right hand side is the original bi value adjusted by a term
that is linear and can be calculated from the Z tables and the
distribution of bi.

• The adjusted constraint holds with a probability α.

A Numerical Example

In this example we work backwards, namely we are given a right hand side
value, and want to know what the probability is that it is satisfied. Suppose
bi is distributed bi ∼ N(42, 4), does a resource requirement Σaijxj = 40.25
hold with probability 0.8?

Step 1 Find kα, using the Z tables. The tables for α = 0.2 give us a value
of 0.85, which we deduce from symmetry is -.85. see the Z table review
if this is not clear. 1 ∴ k0.2 = −.85

Step 2 Find Q using values from the distribution of bi Q =
∑n

j=1 aijxj − b̄i

σbi
=

40.25− 42
2

= −0.875

Step 3 Comparing kα and Q, we see that Q < kα, i.e., −.875 < −.85 ∴ we
know that the constraint value of 40.25 will be satisfied slightly more
than 80% of the time.

6.3.4 Uncertainty in the Technical Coefficients

This special case requires two assumptions about the technology embodied
in the aij coefficients:
First: Individual aij have a known mean and variance
Second: Two or more aij values have a non-zero covariance.
Given these assumptions, we can use the same probability concept as with
the stochastic bi values. However, in this case, the derivation results in
nonlinear (quadratic) constraints in x.

1Note the 0.8 and 0.85 values in this problem are completely different parameters.
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-3 -2 -1 0 1 2 3

k�=-0.85

(1-α)=0.8

α=0.2

Figure 6.9: A Numerical Example

For details see Hazell and Norton (1986, 107-110). For a more general
model specification that combines the mean/variance objective function and
chance constraints on the input supply, see Paris (1979).
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Chapter 7

Calibrating Models with
Nonlinear Yield and
Production Functions

Despite using a nonlinear calibration procedure, the models used so far are
based on a production technology that is linear and does not allow any sub-
stitution among inputs. This section relaxes this stringent and unrealistic
assumption and intro duces three ways in which more general production
specifications can be incorporated in calibrated models.Howitt (1995a) We
develop three cases. In the first two cases,land use is assumed to remain lin-
ear, but the relationship between particular inputs is known a priori. In the
first case we want to incorporate econometric estimates of yield functions,
and in the second case we know the isoquant function that shows the pos-
sible tradeoffs between water use per acre and the capital and management
costs that result in a constant yield. Finally, the third approach is to de-
fine a CES production function for all the production inputs. Given that the
elasticity of substitution is known, and the base input allocations, input and
output prices are also known CES functions can be calibrated analytically.
We present a simple example, and a more complex nested example that
enables the modeler to specify different elasticities of substitution between
different sets of inputs.

Agricultural models that are used for policy analysis are often required
to be disaggregated by region, commodity and input use. The level of disag-
gregation depends on the policy, but for analysis of the interaction between
agricultural price supports and environmental outcomes, the model require-
ments frequently exceed the capacity of the data base for direct estimation.

121
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In this case, the modeler has to use formal or informal calibration methods
to match the model outcome to the available data base. In microeconomic
modeling the process of calibrating models is widely practiced, but rarely for-
mally discussed. In contrast, calibration methods for macroeconomic models
have stimulated an emerging literature. Hoover (1995) provides a survey and
analysis of the contending viewpoints. Gregory and Smith (1993) conclude
that “Studies which use calibration methods in macroeconomics are now
too numerous to list, and it is safe to say that the approach is beginning to
predominate in the quantitative application of macroeconomic models.” In
an earlier paper these same authors (Gregory and Smith, 1990) define cal-
ibration as involving the choice of free parameters in a model by matching
certain moments of simulated models to those of the data.

The ability formally to model input substitution makes the model par-
ticularly suitable for the analysis of agricultural input policies where substi-
tution is an important avenue of adjustment for farmers.

Regional modelers often face the added difficulty of a severely restricted
data set which requires a compromise between the specification complexity of
the model and the degree of disaggregation. The trade-off required to model
the preferred specification with less than optimal data usually determines
the economic modeling methodology used. Using this approach, we can
calibrate nonlinear CES production functions in agricultural models using
a minimum data set that usually restricts the modeler to a linear program.

In the following section the calibration approach to model specification is
outlined. This calibration approach has some characteristics of both econo-
metric and programming models in that it has a more flexible production
specification than linear or quadratic programming (LP, QP) models, but
the free parameters in the model are based on observed farmer behavior
subject to resource and policy constraints.

7.1 Calibrating with Known Yield Functions

In some cases a nonlinear yield function is known and needs to be incorpo-
rated into the model calibration. For example in models where the level of
feed determines livestock growth, or the intensity of supplementary water
use determines crop yield, yield functions estimated from field or experi-
mental data can be simply incorporated into the calibrated model, which
then optimizes both the output and input levels based on their market and
opportunity costs and the value of the output. Using a very simple case
of supplementary irrigation for corn production in the midwest we suppose
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that the yield of corn ( crop i) per acre (yldi)is a quadratic function of the
quantity of supplementary irrigation water per acre (wi).

yldi = ai + biwi + 0.5ciw
2
i (7.1)

It is probably simplest to specify the yield equation above as a separate
equation in Gams, and make the resulting yield an endogenous variable.
The major change needed to calibrate a model with endogenous yields is
that since the yield, price, and input quantity used for each crop with a
yield function are defined, the base case value marginal product (VMP) of
the input must be calculated before the calibration stage LP is defined. If
the crop specific VMP is not calculated before the initial calibration stage,
and used as the crop specific input ”price” in both the LP and PMP stage,
the model will not calibrate. If the base year VMP is used as the crop
specific input price, the PMP model will calibrate in output and input use,
and yield to the base quantities. In addition, when parameterized, the
model will adjust the optimal production on all margins changing both the
optimal input use and the resulting yield of the crops produced. Defining
the nonlinear yield function generally as yldi = f(xij) the endogenous yield
problem is defined as:

maxΠ = piyldixli − vmpijxij (7.2)
subject to Axl ≤ b, (7.3)

Ixl ≤ x̃l (7.4)
yldi = f(xij), and xij ≥ 0 (7.5)

A Gams Program Template An example of a simple PMP yield cal-
ibration Gams program is shown in the Gams templates under Republic-1.
The model is of the Republic river region in Nebraska, and has been simpli-
fied to only grow two crops, alfalfa and corn. To illustrate the procedure,
I have only defined a single quadratic yield function for corn. Alfalfa is
assumed to have the standard fixed yield and water requirements. Param-
eterizing the cost of water shows that both the yield and water use change
in corn production.

7.2 Calibrating with Known Isoquants

In some cases the model builder may find that the best way to represent
productive alternatives is not to have the yield vary with input combinations,
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but to have a constant yield from different combinations of inputs. A CES
isoquant for two inputs x1 and x2 and an elasticity of substitution of σ ,
where the parameter γ is defined as:σ = 1/(1 + γ) is defined in equation 7.6
as:

a (b1x
γ
1 + (1− b1)x

γ
2)

1
γ = 1 (7.6)

The CES isoquant approach was first developed by Hatchet who de-
signed and built the calibrated production model that is the central method
in USBR.. Hatchet estimated CES functions in two inputs that show the
ability to trade off water application per acre against the capital and man-
agement costs of field level application of the water. Essentially this enables
the modeler to specify the objective as a function of a fixed yield, but not
be confined to the fixed proportion assumption that underlies all the linear
Leontieff input requirement matrices that we have used so far. The isoquant
approach reconciles a fixed yield with an infinite combination of inputs that
can result in the yield. It is also consistent with the underlying production
technology. Of course, the isoquant can be a function of several variables, al-
though the CES form used here has to assume that each input has the same
elasticity of substitution. The isoquant approach also assumes that it is not
profitable for the farmer to change input proportions so that crop yields
increase or decrease. This is not the case in many situations, for example,
the deliberate reduction of irrigation water below the rate that optimizes
physical yields is termed ”deficit irrigation” and is commonly practiced un-
der drought conditions when the opportunity cost of water is much higher
than average years. The endogenous adjustment of land allocations, inputs
and yields requires a full production function and is addressed in the next
section. The empirical specification of the isoquant model is:

maxΠ =
∑

i

[piyldixli −
∑

j

ωjxij ] (7.7)

subject to
∑

i

xij ≤ bj ∀i (7.8)

xli ≤ x̃li ∀i (7.9)

αi(
∑

j

βijx
γi
ij )

1
γi = 1 ∀i (7.10)

and xij ≥ 0 (7.11)

A Gams Program Template An empirical Gams template of the
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isoquant approach applied to the simple Republic river model can be found
in the Gams templates under Republic-2.gms.

7.3 Calibrating CES Production Functions

Analysis of a wider response to agricultural policy requires the introduc-
tion of more flexible production functions. The PMP and CGE calibration
approaches can be combined to calibrate agricultural production models
consistently and simply. In this example we will use the simplest crop- pro-
duction data set possible, although this approach can be easily applied to
mixed or pure livestock production.

The CES calibration procedure uses a three-stage approach. A con-
strained linear program is specified for the first stage. In the second stage,
the regional production and cost parameters that calibrate the nonlinear
CES model to the base-year data are derived from the numerical results
of the linear program. The resource and policy constraints that reflect the
empirical data are also included in the calibration process. The third-stage
model is specified with a nonlinear objective function that incorporates the
nonlinear production functions and PMP land costs. The CES model also
has resource and policy constraints. However, the calibration constraints
used in the first stage are absent.

7.3.1 The Analytical Derivation of the CES Parameters

A CES production function with one output, three inputs and constant
returns to scale is defined as:

y = α(β1x
γ
1 + β2x

γ
2 + β3x

γ
3)

1
γ (7.12)

where γ = σ−1
σ ,

∑
βi = 1 and σ = prior value elasticity of substitution.

Taking the derivative of 7.12 with respect to x1, we obtain:

∂y

∂x1
= γβ1x

(γ−1)
1

1
γ

α(β1x
γ
1 + β2x

γ
2 + β3x

γ
3)

1
γ
−1 (7.13)

since γ − 1 = 1
−σ , 1

γ − 1 = 1
σ−1 .

Simplifying and substituting, 7.13 can be rewritten as:

∂y

∂x1
= β1x

−1
σ

1 α(β1x
γ
1 + β2x

γ
2 + β3x

γ
3)

1
σ−1 (7.14)

Equating ρ ∂y
∂x1

= ω1 and ρ ∂y
∂x2

= ω2 results in:
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ω1

ω2
=

β1x
−1
σ

1

β2x
−1
σ

2

(7.15a)

ω1

ω3
=

β1x
−1
σ

1

β3x
−1
σ

3

(7.15b)

From 7.15a we obtain:

β2 = β1
ω2

ω1

(
x1

x2

)−1
σ

(7.16)

Likewise from Equation 7.15b:

β3 = β1
ω3

ω1

(
x1

x3

)−1
σ

(7.17)

But from the constant returns to scale assumption:

β3 = 1− β1 − β2 (7.18)

Substituting 7.16 and 7.17 into 7.18, we obtain:

β1
ω3

ω1

(
x1

x3

)−1
σ

= 1− β1 − β1
ω2

ω1

(
x1

x2

)−1
σ

(7.19)

Dividing through by β1 and rearranging yields:

1
β1

= 1 +
ω2

ω1

(
x1

x2

)−1
σ

+
ω3

ω1

(
x1

x3

)−1
σ

(7.20)

Solving 7.20 for β1 and substituting into Equation 7.16 solves for β2.
Substituting the values into equation 7.17 solves for β3. The numerical value
for the total production, y, in Equation 7.12 is known from the observed
acreage x̄1 and the average yield ȳ. Using the known values for β1 . . . β3 and
Equation 7.12, we can solve for α as follows:

α =
ȳx̄1

(β1x
γ
1 + β2x

γ
2 + β3x

γ
3)

1
γ

(7.21)

The minimal data set needed to specify an LP model are the input
allocations and prices, the expected yield, price and any resource or policy
constraints. If the elasticity of substitution value and the constant returns
to scale assumption are added to this basic data set, the scale and share
parameters of the CES production function can be recursively solved for
any number of inputs using Equations 7.16, 7.17, 7.18, and 7.21.
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7.3.2 The Empirical Application of CES Calibration

The data set, which can be termed the minimum LP data set, is a single
cross- section observation of regional production over i crops. Observations
include product prices pi, acreage allocation x̄i1 crop input use xij cost per
unit input wj , and average yields ȳi Allocable resource limits or policy con-
straints are defined as bj , the right-hand side values of inequality constrains
on the production activities. Regional subscripts have been omitted for sim-
plicity. The first stage LP model is defined in Equations 7.22a to 7.22c. The
generation of the dual values for the two types of constraint in the model
is an essential step in the derivation of adjusted factor costs that will allow
the more complex CES specification to be calibrated from the simple data
base.

max
∑

i piȳixi −
∑

j ωjaijxi (7.22a)
s.t. Ax ≤ b (7.22b)

Ix ≤ x̄ + ε (7.22c)

The two constraint sets 7.22b and 7.22c yield two sets of dual values.
The vector λ1 consists of the resource shadow value Duals associated with
constraint set 7.22b. The vector of elements λ2 are the PMP Duals from
the calibration constraint set (7.22c).

These two sets of dual values are used to calculate the equilibrium op-
portunity cost of land and other fixed but allocable inputs. These values
are then used in the derivation of the production function coefficients.

CGE models are by definition and convention based on Walras’ law for
factor allocation, which defines the set of prices that equate excess supply
and demand (Dervis et al., 1982). For partial-equilibrium models, the fixed
resource endowment and local adjustment costs result in resource factors
having scarcity costs that may not be fully reflected in the nominal resource
or rental prices. While CGE calibration methods can use market prices and
quantities to define the share equations and production function parameters,
partial-equilibrium agricultural models have to augment the nominal prices
by the resource and crop-specific shadow values generated in the first LP
stage of the calibration.

Equation 7.23 shows a three-input CES production function for a single
crop, i:

yi = αi(βi1x
γi
i1 + βi2x

γi
i2 + βi3x

γi
i3)

1
γi (7.23)

where γi = σi−1
σi

, βi3 = 1− βi1 − βi2 and σi = is a prior estimate of the
elasticity of substitution.
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The production function is specified as having constant returns to scale
for a given quality of land, since use of the two sets of dual values and
the nominal factor prices exactly allocates the total value of production
among the different inputs. If the modeler needs to specify groups of inputs
with differing elasticities of substitution, perhaps zero for some inputs, the
nested approach suggested by Sato (1967)is shown in section 1.4. The Cobb-
Douglas production function or restricted quadratic specifications can be
used instead of the CES.

The definition of model calibration in the introduction, and over a decade
of empirical practice with calibrating CGE models, has established the prece-
dent of using robustly estimated parameters from other studies for cali-
bration. Elasticity parameters are often used as they represent underlying
preferences or technologies and, as such, are less likely to vary over specific
model applications.

Given the data, Equation 7.23 with j inputs has j unknown parameters
to calibrate. Namely, (j − 1) share parameters βij and one scale parame-
ter, αi. As shown in section 7.3.1 the (j− 1) unknown share parameters are
expressed in terms of the factor cost and input shares. The first-order condi-
tions for input allocation equate the value marginal product to the nominal
input cost plus any shadow costs for constrained resources. Algebraic ma-
nipulation of the first-order conditions yields the recursive Equations 7.24a
– 7.24c that are solved for the crop and regional-specific share coefficients
as shown above.

1
β1

=
ω̄2

ω̄1

(
x1

x2

)−1
σ

+
ω̄3

ω̄1

(
x1

x3

)−1
σ

(7.24a)

β2 = β1
ω̄2

ω̄1

(
x1

x2

)−1
σ

(7.24b)

β3 = 1− β1 − β2 (7.24c)

where ω̄j equals factor plus opportunity cost and σ equals elasticity of
substitution.

Share equations for variable factor inputs whose supply functions are
assumed elastic are calibrated similarly to those in CGE model production
functions. An important difference between partial equilibrium and CGE
models is in the specification of the resource share equations. In regional
partial-equilibrium models the physical limits on the availability of these
resources has to be reflected in the allocations. In most partial-equilibrium
models these fixed resources will have a market price, but it is likely that the
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physical limits will also result in a dual value for the resource. Accordingly,
the share equations for allocable resource inputs other than land have the
resource shadow cost, measured by the dual for constrained resource group
λ1 , added to the market price of the input to yield ω̄j . Owing to changes in
quality, the cost of land inputs is derived by adding the market price, shadow
value (λ1l) and the marginal crop-specific PMP cost, (λ2i) to yield the land
factor cost ω̄li. This crop-specific cost of land reflects both the scarcity value
of land and the quality differences in land allocated to different crops.

The adjusted factor costs ω̄j exactly exhaust the total revenues for each
cropping activity and are used in Equations 7.24a – 7.24c to calibrate the
share coefficients.

The crop and regional scale coefficient α in Equation 7.23 is calibrated
by substituting the values of β, σ, y, and x back into Equation 7.23, as
shown in Equation 7.21.

Since the marginal implicit cost of changing crop acreage is included in
the share equations via the parameter ω̄li, the cost function must also be
explicitly represented in the objective function. Using the standard PMP ap-
proach, we specify the implicit cost function for each crop in Equation 7.26a
as quadratic in the acreage allocated to the crop. Note that the previously
used notation for the PMP coefficients γ has been changed to ψ to avoid
confusion in the specification of the CES function.

Implicit cost = ψix
2
il (7.25a)

λi2 = 2ψixil (7.25b)

therefore ψi =
λi2

2xil
(7.25c)

Defining the quadratic cost function in Equation 7.26a as the implicit
cost of increasing regional crop acreage, the marginal implicit cost is cali-
brated using the crop-specific PMP dual value. Equation 7.25b shows how
λ2i from Equation 7.25a is used to calibrate the implicit cost function coef-
ficient ψi in Equation 7.25c.

Using the coefficients calibrated above, a general CES representation of
the agricultural resource production problem is:

max
∑

i

piyi −
∑

j

ωijxij −
∑

i

ψix
2
il (7.26a)

subject to yi = αi(
∑

j

βijx
γ
ij)

1
γ (7.26b)

Ax ≤ b (7.26c)
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The model in Equation 7.26a differs from that in the first stage, Equa-
tion 7.22a, in three significant ways. First, the production technology is
more general and has the empirical elasticity of substitution incorporated in
it. This means that the model in 7.26a solves for the optimal input propor-
tions in conjunction with the land allocation, but not in fixed proportions
to it as in the Leontief specification in model 7.22a.

Second, the objective function has the additional implicit cost function
specified for each land allocation. The basis of this cost is in the heterogene-
ity of land, other inputs, and the fixed nature of some farm inputs such as
family labor and major machinery units.

Third, the set of calibration constraints (7.22c) are omitted from the CES
model in 7.26a. The CES model still calibrates with the base-year inputs
and outputs since the dual values from model 7.22a are incorporated in the
first-order condition used to calibrate the production and cost coefficients.
Thus the CES model calibrates exactly to the base-year data without any
arbitrary or empirically insupportable constraints.

To summarize, this section has shown how a minimal data set for a
constrained LP model can be used to generate a more general self-calibrating
CES model.

A Gams Program Template An empirical Gams template of the
CES calibration approach applied to the Yolo county model can be found in
the Gams templates under Yolo-CES.gms.

7.4 Using a Nested CES Production Function

The CES calibration used in the previous section has the implicit restriction
that all inputs have to have the same elasticity of substitution. This may be
unacceptable when the number of inputs is large and varied. For example,
labor and machinery may be highly substitutable for some operations, for
example the size of a tractor versus the number of operators. However
land and irrigation water may have a much lower elasticity of substitution.
This empirical situation has been accommodated for many years by dividing
the inputs into subsets that have similar elasticities of substitution. This
division requires that first the subsets are calibrated, then another CES
function is calibrated to reflect the elasticity of substitution between the
two subsets. This function is called a nested CES production function.
Many studies use computable general equilibrium modeling to simulate the
effects of change in input prices on input use and output. However, CGE
models, due to their complexity, are usually specified with far fewer inputs
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and agricultural production activities than are usually required for regional
agricultural and environmental policy. The nested CES approach enables a
partial equilibrium model to be calibrated in sufficient detail to accurately
reflect the physical differences between regions, but at the same time be
entirely consistent with the more general CGE approach. In fact, there is a
natural symbiosis between detailed calibrated production models and more
general CGE models.

7.4.1 The Nested CES Production Function

The regional total output from each cropping activity qiwr (indices are
dropped for brevity) is defined by a nested CES production function with
seven categories of inputs in this example:

Q = C





βF


CF




2∑

j=1

bjx
γF

j




1
γF




γ

+ βV


CV




7∑

j=3

bjx
γV

j




1
γV




γ



1
γ

(7.27)

The function consists of two nests. The first nest, expressed in the first
set of brackets, includes the first two categories of inputs, the allocatable
inputs of land and water. The second nest, expressed in the second set of
brackets, is for the remaining five variable inputs. Each nest is in itself a CES
function. A nested CES function is more flexible than a regular CES function
in that more than one elasticity of substitution coefficient between inputs can
be modeled. In agricultural crop production, the ability to substitute inputs
varies significantly (Debertin et al., 1990; Hertel et al., 1989; Rendleman,
1993; Ray, 1982). For example, the ability to substitute cultivation for
herbicide weed control is greater than the substitution potential between
water and nitrogen. In the nested CES formulation, the nests can be thought
of as hierarchies. Equation 7.27 has the higher nest parameters on the
outside. The scalar C is the top-nest scale parameter, and βF and βV are the
top-nest share parameters for allocatable and variable inputs, respectively.
Moving to the lower nests, CF and CV are scale parameters for allocatable
and variable input nests, respectively. The quantity of input j allocated
to each cropping activity is indicated by xj where the j values of 1 and 2
correspond to allocatable inputs of land and water, and the remaining values
of j (from 3 to 7) correspond to variable inputs. The parameter βj is the
share parameter of the jth input. In addition to index j, input quantity x is
indexed over i, w, and r, which are dropped here for brevity, The coefficient
γ = (s − 1)/s, where s is the top-nest elasticity of substitution coefficient.
Finally, γF = (sF − 1)/sF and γV = (sV − 1)/sV , where sF and sV are the
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elasticity of substitution between the allocatable inputs and the elasticity
of substitution between the variable inputs, respectively. For the dryland
cropping activities, the allocatable input nest has only the land input as its
argument.

7.4.2 An Application- Measuring Energy Cost Effects

Farmers will react to higher energy costs in several ways. First, they are
expected to substitute low-energy inputs (such as land, capital, and labor)
for energy-intensive inputs (such as fertilizer, chemicals, and on-farm di-
rect energy use). Second, they will reduce the acreage of energy-intensive
crops in favor of less energy-intensive crops. Third, farmers will likely shift
acreage from irrigated to dryland cultivation. Fourth, depending on the
magnitude of the energy price increases and the profitability of the farm
enterprises, in some regions the acreage of low-energy-using crops may also
be reduced. This can occur when output price effects dominate input price
effects. Furthermore, farmers’ responsiveness to energy price changes will
differ depending on the regional differences in profitability conditions and
energy use.

All of these adjustments will take place in a highly interactive environ-
ment in which the changes in input use affect crop yields and, combined
with the cropping pattern and acreage changes, also affect the total out-
put of each crop produced and ultimately the market price of the crops.
The changes in crop prices in turn influence input use, cropping choice, and
planting decisions. To account for these interactions, the economic model
employed in the analysis needs to be national in scope, embody regional
crop production characteristics, and have the ability to explicitly account
for farmers’ input substitution behavior.

The nested approach used to analyze farmer reactions to energy prices
(Konyar and Howitt (2000)) is very similar to models used by Howitt (1995a;
1995b), and by Edwards et al. (1996). Each cropping activity is defined by a
nested constant elasticity of substitution (NCES) production function with
seven inputs as the arguments, allowing the model to endogenously deter-
mine the quantities of inputs used in each activity. The smallest decision-
making unit is a region. There are 12 regions spanning the 48 contiguous
states in the USA. Regions are modeled as aggregate farm units producing
all the major crops in their respective areas under dry and irrigated con-
ditions. The model incorporates aggregate (domestic and export) demand
equations for each crop which endogenously determine crop prices. The
model simulates a conditional near-term sectoral equilibrium in a compara-
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tive static setting. Farmer behavior is predicted for given policy shocks in
terms of acres allocated to specific crops in each region (with or without
irrigation), the amount of each input used, and the impact on crop prices.
More specifically, the model is defined by the following objective function
and constraints.

The Objective Function The objective function represents the aggre-
gate consumer (domestic and foreign) and producer welfare for all regions
and activities:

Π =
∑

i


αi

∑
w

∑
r

qiwr + 0.5δi

(∑
w

∑
r

qiwr

)2

−

∑

i

∑
w

∑
r

τiwrqiwr

−
∑

r


vr1

∑

i

∑
w

xiwr1 + 0.5ωr1

(∑

i

∑
w

xiwr1
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−
∑

i

∑
w

∑
r

ηiwr1xiwr1 −
∑

i

∑
w

∑
r

∑

j

(
ρiwrjxiwrj + φiwrjx

2
iwrj

)

(7.28)

This formulation ensures a competitive market equilibrium solution. The
first expression in brackets measures the area under the crop-specific linear
market quantity-dependent demand equations, where αi is the intercept and
δi is the slope of the quantity-dependent demand equation for crop i. The
variable qiwr described in Equation 7.28, represents the output of crop i,
produced under cultivation condition w (1 = dry and 2 = irrigated), in region
r. The coefficient τiwr in the second expression accounts for the marketing
and transportation costs of output produced. The third expression allows
the land rents to be endogenous at the regional level, where vr1 and ωr1 are
the intercept and slope of regional linear land supply equations, respectively.
The coefficient ηiwr1 accounts for the difference between the regional average
land rent and the crop activity-specific land rents in that region. The last
term in the objective function is the PMP cost function, where ρ and φ are
the coefficients, and the variable xiwrj is the amount of input j (j = 1, . . . , 7,
with 1 = land input) used in the cropping activity i, w, r. This function is
quadratic in the land input and linear in the others. For the non-land inputs,
φiwrj is zero and ρiwrj is the linear per acre cost ciwrj for each input.

The Model Constraints In the following discussion, indices on x are
reintroduced: i (crop), w (irrigation condition), r (region), and j (input).

The regional irrigation water constraint limits the total irrigation water
used by all irrigated crops (w = 2) in a region to the actual total irrigation
water (j = 2) used in the region in the base year, X̄2r2. This constraint is
specified as:



134 CHAPTER 7. YIELD AND PRODUCTION FUNCTIONS

∑

i

Xi2r2 ≤
∑

i

X̄i2r2 (7.29)

Likewise, the regional irrigated land constraint restricts the total land al-
located to irrigated cultivation to the total actual base year irrigated acreage:

∑

i

Xi2r1 ≤
∑

i

X̄i2r1 (7.30)

Constraint 7.30 is redundant in the base run. Since it is not needed
in the calibration step, the right-hand-side value of this constraint is kept
slightly above its actual base year value so as not to bind. It is included
under policy shocks so that the irrigated land in regions will not exceed the
base year levels.

In some arid regions, irrigated crop production occurs on land that has
insufficient rainfall for dryland production. In these regions, dry cultiva-
tion is not an economically viable option for most of the crops grown under
irrigated conditions. In the model, we include constraints to limit the avail-
ability of total dryland in these regions to be no greater than the actual base
year dryland acreage.

7.5 Microeconomic Properties of Calibrated Pro-
duction Models

In generalizing the production specification to the CES class of functions,
calibrated production models show properties consistent with microeco-
nomic theory that are not exhibited in LP or input/output models. The
ability for unconstrained calibration has been addressed in the previous sec-
tion.

With the specification of a nonlinear profit function in land in PMP
models, the standard Hicksian microeconomic properties can be derived.
By specifying the primal-dual model formulation, and making the usual as-
sumption that the matrix of implicit cost coefficients Ψ is positive definite,
it can be shown (Paris, 1993, Chp 11) that the slopes of the supply and
demand functions derived from the calibrated model are respectively posi-
tive and negative, as in Equations 7.31a and 7.31b. The Hicks symmetry
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conditions shown in Equation 7.31c also hold for the CES model.

∂y

∂p
= PSD (7.31a)

∂x

∂ω
= NSD (7.31b)

∂y

∂ω
= −∂x

∂p
(7.31c)

The response of the model output to changes in price, or input use to
changes in cost. The importance of this property is that politically accept-
able agricultural and resource policies are usually constrained to relatively
small changes in costs or policy constraints. The continuous functions in
calibrated production models can reflect these small policy changes and
simulate their economic and physical impact on a regional scale.

The approach presented in this chapter calibrates more flexible produc-
tion functions than linear programs, but uses almost the same minimal data
base. Calibrated production models can be viewed as a compromise between
the ridgidity of linear programming and data requirements of econometric
estimation. The properties of calibrated models are shown to meet many of
the requirements for modeling regional agricultural policies, while the data
requirements are satisfied by the minimal data sets usually available on a
regional basis.

While potential difficulties in the nonlinear solution of a many-dimensional
nonlinear calibrated production specification cannot be blithely ignored, ini-
tial empirical results indicate that these models are quite tractable. Given
the common agricultural policy requirement for modeling regional economic
and environmental consequences, the properties of the models seem to justify
the additional complexity.
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Chapter 8

Nonlinear Optimization
Methods

8.1 Mathematics For Nonlinear Optimization

8.1.1 Concave Functions and Convex Sets

Concave Function

A function, f(x), defined on a convex set Ω is strictly concave if for every
x1, x2 ∈ Ω and every λ, (0 ≤ λ ≤ 1):

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2) (8.1)

The tangent line of a scalar-valued function, f(x), evaluated at x0, has
a value at x1 given by (also see Figure 8.1):

f(x0) + f ′(x0)(x1 − x0)

It follows that the tangent plane for a vector-valued function, f(x), at a
point in n-space (say x0) can be expressed as f(x0) +∇f(x0)(x1 − x0) for
x1 ∈ Rn (see Figure 8.2).

If f(x) is a concave function on the convex set Ω, then the set Ω = {x :
x ∈ Ω, f(x) ≥ c} is convex for every real number c. This is a method for
defining a nonlinear constraint set.

137
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Xx0

f(x0)

f(x0) + f '(x0)(x1 - x0)

f(x)

f(x)

x1

Figure 8.1: Tangent on a Concave Function

x i

Tangent plane

x*

x j

f(xi,xj)

f(x*
1) + ∇f(x*

1)(x2 – x*
1)

Figure 8.2: Tangent plane to a Concave Function (∈ R3)
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8.1.2 Taylor Series Expansion

A second-order Taylor series expansion of the scalar function f(x) around
the point x0 is:

f(x) = f(x0) +
f ′(x0)

1!
(x1 − x0) +

f”(x0)
2!

(x1 − x0)2 + r

Where r is a remainder term. This expansion is often approximated as:

f(x) ∼= f(x1) + f ′(x1)(x2 − x1) +
1
2
f”(x1)(x2 − x1)2

Where f(x0) is the initial value, f ′(x0)(x1−x0) is the tangent line times
the difference in x values, and 1

2f”(x1)(x2 − x1)2 is the 2nd order term.

Xx0

f(x0)

½f ''(x0)(x1 - x0)
2

Tangent Line:
f(x1)First Order Approx 

� f(x0) + f '(x0)(x1 - x0)

f(x)

f(x)

x1

f(x1)FirstOrder

f(x1)Actual

Figure 8.3: Taylor series expansion of f(x) at x0

8.1.3 Matrix Derivatives

Linear form

If L(x) = c′x then ∂L(x)
∂x = c′.
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Quadratic form

If Q(x) = x′Ax then ∂Q(x)
∂x = 2x′A.

In both cases the derivative of a scalar value (resulting from the inner
product of a row and column vector) with respect to a column vector is a
row vector.

8.1.4 The Gradient Vector (∇f(x))

A second convention is that the derivative of a scalar with respect to a
column (row) vector is a row (column) vector. Thus, if the scalar y is a dif-
ferentiable function of the column vector x, the vector of partial derivatives
∂y
∂xi

is a row vector called the gradient vector. For example, if an objective
function has a scalar value which is a nonlinear function of n variables, i.e.:

y = f(x) = f(x1, x2, . . . , xn)

then the vector of first-order partial derivatives, the gradient vector, is
the row vector:

∇f(x) ≡ ∂f(x)
∂x

=
[
∂f(·)
∂x1

,
∂f(·)
∂x2

, · · · ,
∂f(·)
∂xn

]

8.1.5 Inner Products

Because we use inner products a lot we will adopt a new, clearer, notation.
The Inner product of two vectors (a′b = scalar) may now be denoted in
an alternative form as 〈a, b〉 = scalar. Thus the familiar objective function
c′x = z can be written 〈c, x〉 = z.

8.1.6 Hessian and Jacobian Matrices

Hessian matrix

The derivative of the gradient vector with respect to the n×1 column vector
x is the n× n Hessian matrix:

∂2f(x)
∂x2

=
∂

∂x

(
∂f(x)

∂x

)
=




∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn

...
...

...
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n




For example, the Hessian matrix of the quadratic form x′Ax is 2A.
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Jacobian matrix

Similarly the derivative of the column vector of m functions, gi = gi(x),
with respect to x (where each function depends on the n× 1 column vector
x) is the m× n Jacobian matrix :

∂g(x)
∂x

=




∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xn
∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xn
...

...
...

...
∂gm

∂x1

∂gm

∂x2
· · · ∂gm

∂xn




8.1.7 Taylor series expansion of a Vector Function

We can now use gradients, Hessians, and the scalar Taylor series to approx-
imate functions of vectors.

Suppose f(x) is a function of the n× 1 vector x.
Given some vector of initial values x0, we can expand around this vector

to approximate the functional value of some other vector x1.

f(x1) = f(x0) + 〈∇f(x0), (x1 − x0)〉+
1
2
(x1 − x0)′Hx0(x1 − x0) + r0

Where:

• ∇f(x0) is the gradient of f(x) at x0.

• Hx0 is the Hessian of f(x) at x0.

• (x1 − x0) is an n× 1 vector of the differences between x1 and x0.

• r0 is the remainder term of the expansion that could be reduced by
going to higher terms.

8.1.8 Definite Quadratic Forms

Some quadratic forms have the property x′Ax > 0 ∀ x except x = 0;
some are negative for all x except x = 0.

Positive Definite Quadratic Form

The quadratic form x′Ax is said to be positive definite if it is positive (> 0)
for every x except x = 0.
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Positive Semidefinite Quadratic Form

The quadratic form x′Ax is said to be positive semidefinite if it is non-
negative (≥0) for every vector x where x 6= 0, and there exist points for
which x′Ax = 0.

Negative definite and negative semidefinite forms are defined by inter-
changing “negative” and “positive” in the above definitions. If x′Ax is posi-
tive definite (semidefinite), then x′(−A)x is negative definite (semidefinite).

8.2 An Introduction to Nonlinear Optimization

8.2.1 Some Non Linear Programming (NLP) Definitions

The Standard NLP Problem

min f(x) where x = n× 1 vector
subject to x ∈ Ω

and where Ω denotes the feasible solution set. Ω ∈ Rn or a subset of Rn.
Note that the objective function and the solution set are no longer defined
by linear functions.

Local Minima

A point x∗ ∈ Ω is a local minimum of f(x) on Ω if there is a small distance,
ε, such that f(x) > f(x∗) ∀ x ∈ Ω within the distance ε of x∗.

Verbally: “The objective function increases in all directions, therefore
we are at the optimum point for a minimization problem.”

Global Minima

A point x∗ ∈ Ω is a global minimum of f(x) on Ω if f(x) > f(x∗) ∀ x ∈ Ω.
The aim is to set criteria for a computer program to perform a systematic

search over a mathematical surface. As in finding your way to a location,
good directions will give you a sequence to follow. In each sequence or step
you need to know the direction d to proceed, and how far α to go in that
direction.
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Feasible Directions

Along any given single direction d, the objective function f(x) is a function
of the distance moved in a direction. Note any direction in Rn is an n-
dimensional vector.

For x ∈ Ω, d is a feasible direction at x0 if there exists a scalar α > 0,
such that:

(x0 + αd) ∈ Ω ∀ α(0 ≤ α ≤ ᾱ)

i.e. A particle can move in direction d for a distance α ≤ ᾱ without
leaving the feasible set Ω.

Notes:

• A direction in “n-space” (Rn) is an n-dimensional vector d.

• Along any given single direction d, the objective function f(x) is a
function of the distance moved in that direction.

Example in two-space: In R2 where x =
[

x1

x2

]
, then d (the directional

vector) can be
[

2
1

]
,

[
4
2

]
, or

[
34
17

]
.

So, the vector d gives direction, not distance. A direction depends on
the ratio of values in the vector not the values themselves.

x1
x1,0

x0 +
�d

x2

A

B

x2,0
�

�
 Boundary

Figure 8.4: Feasible Directions

The feasible directions depend on
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• ᾱ = the step size limit. Note that the feasible directions d at a point
x0 are a function of the step size limit and vice versa.

• Where starting point x0 is situated in Ω.

• In Figure 8.4, the arc from point A to point B describes the set of
feasible directions at x0 for step size ᾱ.

8.2.2 Nonlinear First Order Conditions

Local Minimum Point — Constrained Problem

Given the objective function f(x) and the constraint set Ω. If x∗ is a local
minimum point of f(x) over Ω, then for any feasible direction from x∗, the
necessary condition is (for all feasible directions d ∈ Rn ∩ Ω):

〈∇f(x∗), d〉 ≥ 0 (8.2)

xi

f(x)

d<0

f(xi)

x*

d>0

Figure 8.5: Minimizing a Scalar Function

Equation 8.2 can be explained from figure 8.5 as follows:
Moving left from x∗, d < 0 and ∇f(x) = ∂f(x)

∂x < 0 so ∇f(x) · d > 0.
Moving right from x∗, d > 0 and ∇f(x) = ∂f(x)

∂x > 0 so ∇f(x) · d > 0.
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This works since d is defined as the direction you’re moving from the
point x∗, that is, each element is a distance (xi− x∗i ) as in the Taylor series
expansion.

8.2.3 Proof of First Order Condition

1. Let x∗ equal a local minimum.

2. Pick another point x(α) at an arbitrary distance α in direction d (α >
0). x(α) = x∗ + αd. Therefore the new objective value is f(x∗ + αd).

3. Apply Taylor series expansion, that is truncated its first order, to
f(x(α)) around f(x∗).

f(x(α)) = f(x∗ + αd)
≈ f(x∗) + 〈∇f(x∗), (x(α)− x∗)〉
≈ f(x∗) + 〈∇f(x∗), αd〉 (8.3)

Note that the second-order terms and the remainder term in the Taylor
series expansion have been truncated, making this an approximation.

4. If x∗ is a minimum point, by definition:

f(x∗)− f(x(α)) ≤ 0 (8.4)

5. Substituting the expansion for f(x(α)) defined in 8.3 into 8.4, we ob-
tain:

f(x∗)− f(x∗)− 〈∇f(x∗), αd〉 ≤ 0 (8.5)
∴ −〈∇f(x∗), αd〉 ≤ 0 (8.6)

6. Factoring out the scalar α and multiplying by - 1 we get:

α〈∇f(x∗), d〉 ≥ 0 (8.7)
Since α > 0, x∗ being a minimum implies:

〈∇f(x∗), d〉 ≥ 0 (8.8)
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The Unconstrained Problem

If the problem is unconstrained, this implies that x∗ is an interior point and
therefore (for some small enough α > 0) all directions d are feasible.

For unconstrained problems, the feasible-direction vector d can have any
sign or direction, thus, the first order condition 〈∇f(x∗), d〉 ≥ 0 for all d
contained in Rn implies that ∇f(x∗) = 0 because:

〈∇f(x∗), d〉 = [f ′1, f ′2, . . . f ′n]




± anything
± anything

...
± anything


 ≥ 0 for all possible directions d

This means [f ′1, f ′2, . . . f ′n] must equal [0, 0, . . . , 0].

Unconstrained Optimization Example

min f(x1, x2) = x2
1 − x1x2 + x2

2 − 3x2 (8.9)

There are no constraints; therefore the feasible region is the whole of
two-space on the real line, or (in symbolic terms) Ω = R2.

FOC ∇f(·)′ = 0 ⇒
[

∂f(x)
∂x1

∂f(x)
∂x2

]
set=

[
0
0

]

Solving the two gradient equations:

1. 2x1 − x2 = 0 ⇒ 2x1 = x2

2. −x1 + 2x2 = 3 ⇒ −x1 + 2(2x1) = 3 ⇒ −x1 + 4x1 = 3

Therefore x1 = 1 and x2 = 2. Try substituting this into 8.9 and check other
values.

Constrained Optimization Example

min f(x1, x2) = x− x1 + x2 + x1x2

subject to x1 ≥ 0 and x2 ≥ 0
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Problem B has a global minimum at

x1

x2

=
=

[ 1
2

0

]

Do the constrained first order conditions hold at this point? Check FOC

∇f(x∗) = [2x1 − 1 + x2, x1 + 1]

Substituting the numerical x1 = 1
2 and x2 = 0 for x1 and x2 into the

FOC equation yields the gradient values at [x1 = 1
2 , x2 = 0] of [0, 3

2 ].
Now we pick a small step size, say α = 0.1. Therefore at x∗, the feasible

directions given the constraints and the initial values are:

d =
[
∆x1

∆x2

]
=
=

[
anywhere

positive values only

]

The condition 〈∇f(x∗), d〉 > 0 implies:
[
0,

3
2

] [
∆x1

∆x2

]
> 0 or

3
2
∆x2 > 0

While ∆x1 can be positive or negative, ∆x2 can only have positive values,
therefore the constrained First Order Conditions in 8.7 hold.

8.3 Steepest Descent Algorithms

8.3.1 Steepest Descent Direction

The gradient vector of a function indicates the direction of movement which
results in the greatest change in the function value.1

Example: Given f(x) = a′x + x′Bx, where:

x =
[
x1

x2

]
a =

[
10
8

]
B =

[ −2 0
0 −1

]

We know that f(x1, x2) = 10x1 + 8x2 − 2x2
1 − x2

2.
Given the initial values of x0 =

[
1
3

]
, we can find that f(x0) = 23. The

gradient at x0 can also be calculated:

∇f(x0) =
[
∂f(x)
∂x1

,
∂f(x)
∂x2

]
= [10− 4x1, 8− 2x2] = [6, 2]

1For a proof, see “directional derivative” in Greenberg (1978, 156-7).
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Therefore, the gradient at x0 indicates a direction in the ratio of 3:1 in
(x1, x2)-space.

Numerical Example: Suppose we have an additional 2 units to allocate
between x1 and x2 at x0. We can compare three different allocation strate-
gies in order to maximize our objective function.

Strategy I: Put all units (i.e., 2) on the most profitable activity. This is
x1, since it has the largest marginal product.

x̃1 = 1 + 2 = 3 x̃1 = 3 ⇒ f(x̃) = 30 + 24− 18− 9 = 27

Strategy II: Even split between x1 and x2, i.e., one unit is added to each.

x̄1 = 2 and x̄2 = 4 ⇒ f(x̄) = 20 + 32− 8− 16 = 28

So this result is an improvement over Strategy I.

Strategy III: Use the gradient ratio to set the allocation. The gradient at
x0 is ∇f(x0) = [6, 2]. The ratio is 3:1. Thus of the two extra units,
1.5 goes to x1 and 0.5 goes to x2. The new values of x are:

x̂1 = x1 + 1.5 = 2.5 x̂2 = x2 + 0.5 = 3.5

Which yields an objective value of:

f(x̂) = 25 + 28− 12.5− 12.25 = 28.25

This strategy is best since it is an improvement over Strategy II.

8.3.2 An Outline of the Gradient Algorithm

Step 1: Pick an initial starting point x0.

Step 2: Check if ∇f(x0) = 0 if so, stop since we are at a critical point.

Step 3: If ∇f(x0) 6= 0 i.e., < 0 for a minimization problem, we move to
another point:

x1 = x0 + α1d1

Where d1 = direction = ∇f(x0) and α1 = step size.

The objective function improvement condition f(x0 + α1d1) < f(x0)
holds if and only if 〈∇f(x0), d〉 < 0 for a minimization problem. Notes:
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• This improvement condition is analogous to the negative rj cri-
terion for entering activities in a minimizing LP problem (See
chapter 3).

• The objective function improvement condition has the opposite
sign to the first-order optimality condition in equation 8.2 on page
144. This is because the optimum is defined as the point where
no improvement of the objective function is possible.

Step 4: Return to Step 2.

A two-dimensional example See Figure 8.6.

x

f(x)

x1

�

2

f(x)

�

x0x*

Figure 8.6: Example of steps converging on the minimum.

1. Objective: Select x to minimize f(x).

2. Start at x0. Slope = ∇f(x0) > 0, so choose d < 0 to satisfy the
objective function improvement condition, 〈∇f(x0), d〉 < 0.

3. With α1 step size, we arrive at x1. At x1∇f(x1) < 0, so we choose
d > 0 to satisfy 〈∇f(x1), d〉 < 0.

4. With α2 step size, we arrive at x∗. Note that I faked the selection of
α1 and α2 so that the problem converged in two steps.
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5. At x∗,∇f(x∗) = 0 and 〈∇f(x∗), d〉 ≥ 0. Therefore, we are at the
minimum.

8.3.3 Practical Problems with gradient Algorithms

Starting points

Starting points must be feasible. One method of choosing starting points
is to use a linear approximation to find points in the feasible set and use
them as the starting points. Note that GAMS gives initial conditions that
are feasible.

Step size

The step size must not take you out of feasible set at each iteration. See
Figure 8.7 for examples.

�

�

Here � is small and will require many iterations but will work.

Here � is so big that you miss the optimum.

A self-adjusting step size gets smaller as it moves towards the optimum.
(GAMS defaults to this system)

x*

Figure 8.7: Step size examples

Scaling

Scaling the values of the data to balance the Hessian matrix of the objective
function is a very important operation for all nonlinear solver routines. The
essential aspect is to scale the data values and the corresponding coefficients
so that the eigenvalues of the Hessian are within three orders of magnitude
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of each other. Technically, the condition value for any matrix is the ration
of the largest and smallest eigenvalue.

Example: A very simple unconstrained quadratic problem can be de-
fined as:

Z = [α1 α2]
[
x

y

]
− [x y]

[
γ11 γ12

γ21 γ22

] [
x

y

]

Well-scaled outcome: If α = [10.585, 2.717], then:

Γ =
[

0.3786 0.00578
0.00578 0.02193

]

The eigenvalues for Γ are 0.3787 and 0.0218, so the condition number is
17.37. This is a well-scaled result. The surface to be searched by the algo-
rithm appears in Figure 8.8. Note that the surface gradients with respect
to x and y are quite similar and the calculation of a gradient will have a
similar rounding error in each direction.

Figure 8.8: Well-scaled outcome. The surface is similar with respect to both
x and y axes.

Poorly-scaled outcome: If α = [10.585, 0.2717], then:

Γ =
[

0.3786 0.00578
0.00578 0.000219

]
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The eigenvalues for this matrix are 0.3787, 0.0001 and the condition
number is 3787. Note that scaling y by a factor of 10 has increased the
condition number 218 times. The surface to be searched by the algorithm
appears is in Figure 8.9. Note that the gradients are very different and the
y-axis values are multiplied by 10. The same rounding errors and step size
are applied in both directions, but have very different effects on the change
in the objective Z value. Thus the gradient will try and converge in one
dimension but not the other.

Figure 8.9: Poorly-scaled outcome. An algorithm will fall off the narrow
objection function surface.

This “poorly scaled” condition creates a “hill” on the objective function
surface that is very narrow, and the algorithm may “fall off” the surface.
Given that the rounding error in calculating the numerical gradients is the
same for the very large and small values the proportional error will be mag-
nified by large differences in scaling.

8.4 Reduced gradients

For constrained nonlinear optimization problems it is very common for the
number of nonzero activities in the optimal solution to be greater than the
number of binding constraints. Thus, there may be m-binding constraints
and k (k ≥ m) activities in the optimum solution, as in the case where we
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could use the PMP approach. However, all k activities enter the constraint
set despite the m-dimensional basis. The reduced gradient is the nonlinear
analog to the reduced cost in LP, and incorporates the linkages between
activities due to the constraints. The net effect of a marginal change must
therefore consider the direct gradient and the effect on other gradients, due
to the linkage of the constraints.

Given the constrained nonlinear problem:

min f(x)
subject to Ax ≥ b, x ≥ 0, and q × 1

At any point, the q × 1 vector x can be partitioned into three sets:

xB an m× 1 set of basis (dependent) variables.
xN a k × 1 set of independent variables.
x0 a (q −m− k)× 1 set of zero valued variables.

Likewise, the matrix A can be partitioned into three matrices B (an
m ×m basis matrix), N (an m × k matrix of technical coefficients for the
independent variables), and D (an m × (q − k − m) matrix for the zero
valued variables). Without loss of generality, we can drop the zero-valued
variables, (x0), and the non-binding constraints from the problem. The
problem becomes:

min f(xB, xN ) (8.10)
subject to BxB + NxN = b

Using the constraint, the dependent variables can be written as a func-
tion of the independent variables:

xB = B−1b−B−1NxN

Substituting this expression back into 8.10 produces a new objective
function: min f(B−1b−B−1NxN , xN ) with two useful characteristics:

1. The effect of the binding constraints are incorporated in the objective
function.

2. The whole problem is expressed as a function of only the independent
variables, xN .

The resulting reduced gradient for this problem is:

rxN = ∇fxN (·)−∇fxB (·)B−1N

The reduced gradient captures the net effect of a marginal change in an
independent variable.
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8.4.1 Necessary Condition

It can be shown (Luenberger get citation) that a necessary condition for a
linearly-constrained nonlinear optimization is that all the reduced gradients
are zero.

Note that the Gams/MINOS algorithm uses reduced gradients for this
purpose in nonlinear problems and prints the “rg” value on the right-hand
side of the activities.

8.5 Newton’s Method

Newton’s Method uses the Hessian as well as the gradient to search over the
set of all the critical stationary points, i.e., where ∇f(x) = 0. Since we now
consider a sequence of algorithm steps, we use the more general subscript
notation of k, k+1, k+2, . . . to represent the steps.

8.5.1 Derivation

Starting at some point xk, we wish to move to a new point xk+1, which has
the property that it is a critical point, i.e.:

∇f(xk+1)′ = 0 (8.11)

In this method, we start with the gradient and expand around it. Using
a Taylor series expansion of the gradient of xk, we get:

∇f(xk+1)′ ≈ ∇f(xk)′ + Hxk
(xk+1 − xk)

set= 0 (8.12)

where Hxk
is the Hessian of f(x) at xk. ∇f(xk+1)′ = 0 is called the

“stationary point condition” and allows us to rewrite equation 8.12 as:

Hxk
(xk+1 − xk) = −∇f(xk)′ (8.13)

Assuming that Hxk
is nonsingular and invertible, we can multiply 8.13

by H−1
xk

and move xk to the right-hand side to yield:

xk+1 − xk = −H−1
xk
∇f(xk)′ ⇒∴ xk+1 = xk −H−1

xk
∇f(xk)′ (8.14)

Note that with a quadratic objective function, a stationary point xk+1

is reached in one step! An example of Newton’s (1642 - 1727) mind at work,
which is still topical after three hundred years. Beautiful!

Example: Newton’s Method applied to a quadratic problem.
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1. Start with f(x) = a′x + 1
2x′Bx where the Hessian matrix B is nonsin-

gular and positive definite at x0.

2. Take the gradient∇f(x0)′ = (a+Bx0)′ where Hx0 = B — independent
of the choice of x0.

3. Apply Newton’s Method:

x1 = x0 −B−1(a + Bx0) = −B−1a

Also independent of choice of x0.

4. Check if x1 is a stationary point by substituting the Newton value for
x1 into ∇f(x1)′ = a + Bx1. This gets us:

∇f(x1)′ = a + B(−B−1a) = a− a = 0

5. Therefore, we have reached a stationary point with only one estima-
tion.

Note: For non-quadratic functions, the Newton is an approximation to
the function and therefore will take several steps. However, if the Hessian
is well-conditioned, Newton’s method will converge rapidly.

8.5.2 Caveats on Newton’s Method

• The Newton approach finds stationary points, it does not guarantee
that they’re global or even local optima.

• The Hessian is often hard to invert.

8.5.3 Criteria for Non-Linear Algorithms

There are several criteria used to choose which non-linear algorithm suits
your situation. Here is how Newton differs from a gradient approach:

Convergence rate: Newton is faster than the steepest-decent method.

Computational difficulty: Newton requires generating, then inverting the
Hessian.

Stability: Newton requires a well-conditioned Hessian.
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8.5.4 Newton Step size

Used when the objective function is not quadratic in form. In this case the
Taylor series expansion that forms the basis of the Newton derivation is only
an approximation of the function:

xk+1 = xk − αH−1
xk
∇f(xk)′ for a minimization problem.

Note: If Hxk
is an identity matrix, then this is equivalent to the steepest-

descent method and reduces to:

xk+1 = xk − α∇f(xk)′

8.5.5 Movement Towards a Minimum

The necessary conditions for movement towards a minimum with the Newton
method are clarified by a change to condensed notation. Define:

dk = −H−1
xk
∇f(xk)′ direction

Mk = H−1
xk

algebraic simplification
gk = ∇f(xk)′ algebraic simplification

For a minimum: We require the “downhill” condition in the new notation
to be 〈dk, gk〉 < 0 i.e., d′kgk < 0. Using the notation defined above, this is
equivalent to:

(−Mkgk)′gk < 0 or g′kMkgk > 0

This is most easily fulfilled if Mk = H−1
xk

is a positive-definite matrix.

8.5.6 Desired Conditions for Hxk

• Non-singular

• Positive definite

• Well-conditioned (eigenvalues within 103 of each other)

8.5.7 How to make an Ill-conditioned Hessian Well-conditioned

• Greenstadt’s Method — similar to ridge-regression.

• Scaling — a much better approach that aims to change the units of
measurement associated with the Hessian so they are close to each
other (i.e. within 103 of each other).2

2For a more extensive discussion on scaling see Gill and Wright (1982, 346-354).
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The GAMS solver Conopt2 now has an effective scaling routine that
updates the scaling factors as the solver progresses. This scaling option
should not be confused with the standard GAMS scaling option that
scales the GAMS problem before the solver is called. The Conopt2
scaling system has to be called from an appropriate “Options” file in
the GAMS program. For an example of a Conopt2 options file see the
Gams templates.



158 CHAPTER 8. NONLINEAR OPTIMIZATION METHODS



Chapter 9

Calibration with Maximum
Entropy

9.1 Measuring Information

The PMP cost function in Chapter 5 has its quadratic coefficients solved
analytically by solving two equations in two unknowns. However, this ana-
lytical solution requires that the quadratic cost matrix is specified as strictly
diagonal. There is a significant practical problem with the diagonal spec-
ification in that is assumes that there are no “cross effects” between the
amount of land allocated to crops, apart form the effect on the total land
constraint. In economic parlance this assumption requires that there are
no substitution or complementary cost effects between crops grown in the
same district or farm. Clearly the almost universal existence of rotations
in crop production implies that farmers are well aware of the interdepen-
dencies among crops, and use them to stabilize or increase profits. Clearly,
the assumption of a diagonal cost matrix is unrealistic. But to calibrate a
full matrix of coefficients requires solving an “ill-posed” problem in which
we are trying to estimate more parameter values than we have data points,
an estimation with negative degrees of freedom. As we saw in chapter 2,
we cannot solve ill-posed problems by inverting matrices. Fortunately there
is an alternative method that can obtain parameter estimates for ill-posed
problems using information theory and the principle of maximum entropy.

Claude Shannon was a giant in information theory. In 1948, he published
a paper that proposed a mathematical way of measuring information, and
started the information revolution. Shannon noted that information is inex-
tricably linked with the probability of an event about which the signal tells

159
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us. Clearly a signal that tells us that an extremely unlikely event, such as a
bad earthquake in Davis, has gone from a very low probability of happening
to a very high probability has a very high information content. Note, we are
not even considering whether the event has any particular value associated
with it. Likewise a signal that tells us that a very likely (high probability)
event will happen has a low information content.

Shannon proposed several axioms that a measure of information must
have, and showed that the only measure of information content that satisfied
the axioms is if the information content of a signal is:

ln(p) where p is the prior probability of the event happening (9.1)

Shannon extended the definition from single probabilities to discrete dis-
tributions and defined the expected information content of a prior distribu-
tion Σipi as the entropy of a distribution:

H = −Σipi ln pi (9.2)

It follows that a distribution that has a uniform distribution, in which
each event is equally likely, has the highest entropy and the lowest infor-
mation content. Conversely, a distribution that puts a weight of one on a
single outcome and zero on the rest, has an entropy of zero. Remember that,
counter intuitively, a distribution that shows that a given event will occur
with probability one, has the highest information content (lowest entropy).

If we specify a set of discrete values over the feasible range of a parameter
value termed the support set or space then multiplying each support value
by its associated probability yields and expected parameter estimate, and
there is an entropy value for the distribution associated with the parameter
value. However, as one would expect with an ill-posed problem, there is an
infinite set of probabilities that will yield any given parameter value. We
have to use the entropy criteria to choose a unique distribution from among
the infinite set of feasible distributions.

Edwin Jaynes, another information pioneer, showed that the distribution
with the highest entropy can occur in the most number of ways. The concept
of “multiplicity” is similar to frequency or maximum likelihood in conven-
tional estimators. Essentially the distribution with the maximum entropy
is the best estimator. Maximizing entropy also has another fine property,
in that the entropy function in equation 9.2 has a unique solution at the
maximum.

Thus by defining a support space for our parameter and solving for the
maximum entropy distribution that has an expected value consistent with
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the data, we can get a unique solution to the ill-posed problem, and estimate
more parameters than we have observations!

9.1.1 The “Loaded” Dice Example

Here we see how we intuitively calculate six parameters (probabilities) from
a single data observation. Jaynes in his 1963 Brandeis lectures on maximum
entropy used the example of a game using a six-sided dice with the usual
values from 1 – 6. Suppose that you know the average value of a large
number of independent rolls of the dice. For a given mean value there are
an infinite number of combinations of the six probabilities that could have
generated the mean value. The problem is ill-posed because we are given
one data point, the mean value, and we have to estimate six probabilities.
The only structural constraint that we have is that the probabilities have to
add to one.

Think about a game in which your opponent produces a dice and suggests
that it is rolled twenty times, and if the average score is above 4 you win,
and if the average score is below 3 they win. With “fair dice” (in which we
assume that the probability of each side coming up is even), this is a fair
game as one would expect that the average of a series of rolls would be 3.5.
If you notice that the rolls of the dice come up consistently with 1, 2, or 3,
you will alter your initial assumption that the dice are fair, and assume that
your opponent is cheating with dice “loaded” to favor the low scores. You
have just performed an ill-posed estimation of the probabilities.

Using the principle of multiplicity, the distribution that maximizes the
entropy is the most likely to be probabilities underlying the dice. If we define
the score values as xi, the dice problem, defined and coded by W. Britz, is
specified as:

max H = −Σipi ln pi (9.3)
subject to Avg. Score = Σixipi

Σipi = 1, pi ≥ 0

The GAMS solution to the dice problem is posted with the GAMS tem-
plates on the webpage. The Maximum Entropy (ME) probability results for
a range of average scores from 1.5 to 5.5 is plotted in Figure 9.1 and the
entropy value for different average scores is plotted in Figure 9.2.
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9.1.2 A Simple Example of Maximum Entropy Parameter
Estimation

Assume that we want to estimate two parameters in the simple quadratic
cost function:

TC = ax +
1
2
bx2 (9.4)

We only have one observation in which we see that the marginal cost is
60 when the output x = 10. The data relationship that we have to satisfy
is:

60 = a + 10b (9.5)

There are an infinite number of parameter values for a and b that satisfy
this relationship. Suppose we consider five discrete values for a support
space. If we rule out negative costs, the lower support space is bounded
at zero and the upper support space can be defined by the coefficient value
that would explain all of the cost when the other coefficient is zero. Using
this as a basis for the support values, five evenly distributed support values
would be:

zai = [0, 8, 16, 32, 40] zbi = [0, 1, 2, 3, 4] (9.6)

A feasible set of probabilities that would solve equation 9.7

MCj = Σizaipai + (Σizbipbi)xj (9.7)
subject to Σipai = 1, Σipbi = 1, pai, pbi ≥ 0

is pai = [0, 0, 0, 0.25, 0.75] and pbi = [0, 0.15, 0.5, 0.35, 0]. The distribu-
tions for this solution are plotted in histograms in Figure 9.3
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9.1.3 The Maximum Entropy Solution

The maximum entropy problem that solves for the two distributions that
are most likely to have generated a marginal cost of 60 for an output of 10
is:

max −Σipai ln pai − Σipbi ln pbi (9.8)
subject to MCj = Σizaipai + (Σizbipbi)xj

Σipai = 1, Σipbi = 1, pai, pbi ≥ 0

The Maximum Entropy (ME) solution to this problem is plotted on
the histograms in Figure 9.4. Clearly the ME solution satisfies the data
constraint without having to use such specialized, and unlikely, distributions
as the ad hoc solution above.
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Figure 9.4: Consistent Maximum Entropy Distributions

The expected parameters that result from these two calculations are:

Ad Hoc Values Maximum Entropy
E(a) 38.0 30.217
E(b) 2.2 2.978
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9.2 Maximum Entropy PMP Modeling

9.2.1 The Basic ME-PMP Model

So far the cost matrix for PMP models has been restricted to a diagonal
specification that implicitly assumes that the cost of growing a particular
acreage of a crop is completely disconnected from the other crop acreages.
In a typical agricultural production situation crops compete for limited land
resources of different quality. In addition, crop rotations are based on sub-
stitute or complementary relations between crops in the rotation. Under
this more realistic situation the marginal cost of growing a quantity of crop
depends on its own level of production, and also the level of production of
all the other crops. The PMP total cost function for n crops is:

TC = α′x + 0.5x′Γx (9.9)

where Γ is an n × n matrix and the marginal cost for a given crop k is a
function of all the x values.

MCxk
= αkxk + Σiγkixi (9.10)

Equation 9.10 shows the fundamental problem of ME- PMP. For a prob-
lem with n crops in the optimal solution we have n marginal costs on the left
hand side, but a total of n+ n2+1

2 unknown parameters in n equations. This
total has n α parameters, and n2+1

2 unknown γ parameters. This last set is
based on the symmetry requirement of the cost matrix. Clearly we cannot
derive this number of parameters analytically, or estimate them normally
as we have negative degrees of freedom. The approach that we use is to
solve a maximum entropy reconstruction problem that generates the α and
γ parameters that satisfy the first order conditions of equation 9.10.

9.2.2 Defining the Support Space Values — z-values

To ensure feasible solutions that have a unique optimum the PMP matrix
Γ has to have feasible support values that satisfy the first order conditions.
Since the z-values are “priors” on the parameters that we want to reconstruct
they can have a strong influence on the resulting parameters. We need to
be aware that the defined z-values must be:

1. Feasible for the data constraints that we are going to impose on the
support space.
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2. Neutral in their effect on the estimate unless we have information that
we want to incorporate in the priors

Feasible Supports

In the simple parameter and dice example the z-values of the dice are clear,
and for the cost parameters they were glossed over. When defining a system
for generating z-values for different models and crop components in the
models we need a more formal approach. Feasible z-values are generated
by defining the z-values (say five) as being the product of a single centering
parameter value and five z-weight parameters:

zval(j, p) = zwgt(p) ∗ cval(j)

The centering cval(j) is an empirical value the modeler calculates will be
feasible for the data set imposed on it. For example, if we are reconstructing
a PMP cost function matrix as a function of the acreage planted of a crop,
then a feasible value for the marginal cost coefficient is the average cost
divided by the base acres.

Non-Informative z-values: The zwgt(p) parameters can be thought of
as spreading the cval(j) value across a feasible range for estimation. For
a diagonal cost parameter that is strictly positive, the range may go from
0, 0.5, 1.0, 1.5, 2.0. For an off-diagonal parameter the cval(j) weight will
be reduced, possibly to 0.25 the diagonal weight and centered on 0, with
weights of -1.5, -0.75, 0.0, 0.75, 1.5. This system of generating z-values is
designed to automatically generate a set of feasible but noninformative prior
z-values. Informative z values are used in a later section

9.2.3 Adding Curvature Conditions by Cholesky Decompo-
sitions:

To ensure that the resulting matrix PMP model converges to a stable solu-
tion the necessary second order conditions require that the Hessian of the
cost function is negative definitive. Since the Hessian is the Γ matrix, this
requires that Γ is positive definite. Diewert shows that a necessary condi-
tion for a matrix to be positive definite is that the diagonal elements of its
Cholesky decomposition matrix are positive.

What is a Cholesky decomposition? Judd (1999) says that we can think
of a Cholesky decomposition as being the “square root” of a matrix. The
C matrix is a lower triangular matrix L that when post-multiplied by its
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transpose yields the original matrix. If Γ = LL′ then L is the Cholesky
decomposition.

If Γ is a 3× 3 matrix . . .

Γ =




γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33




The Cholesky decomposition . . .

L =




l11 0 0
l21 l22 0
l31 l32 l33




Γ = LL′ =




l11l11 l11l21 l11l31

l21l11 l21l21 + l22l22 l21l31 + l22l32

l31l11 l31l21 + l32l22 l31l31 + l32l32 + l33l33




This latter expression results in two sets of equations for the diagonal
and off-diagonal elements of Gamma:

γjj =
j∑

k=1

l2jk γij =
j∑

k=1

likljk

by adding these equations as constraints on the entropy problem and
constraining the diagonal Cholesky terms to be greater than zero (here >
0.001), we can impose curvature conditions on the Gamma matrix that
ensures that the simulated problem will satisfy the second order conditions.

9.2.4 Implementing ME-PMP on the Yolo County Model

The procedure that implements a ME estimate of the PMP cost matrix for
the Yolo model is found in the Gams Template section on the website. The
procedure is exactly the same as the basic and standard PMP approaches for
the first stage LP model with calibration constraints. The major difference
is in the next stage, which for basic and standard PMP, involves the analytic
calculation of the α and γ parameters. As previously stated, for the ME-
PMP method we solve a maximum entropy reconstruction of the α and γ
parameters. The standard PMP method is used to generate the marginal
costs for the left hand side of the entropy constraints. First, we use an
elasticity on the marginal crop to calculate the ”Adj” value, that is the
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difference between average and marginal costs for the marginal crop. Second,
the Adj value is used to increase all the λ2 values, to adjust them for the
lower opportunity cost of land. The new λ2 values are then used to calculate
the marginal cost for each crop, defined as Lam, where Lam = λ2 + AC.

Defining the z weights and z-values: The z weights are used to impose
prior restrictions or properties on the resulting parameters. For example,
since the α values are cost function intercepts, they can be positive or neg-
ative. In this first example of Maximum Entropy PMP models we combine
the curvature constraints and the prior support values for the PMP cost ma-
trix Γ by defining Γ in terms of the product of its lower triangular Cholesky
matrices, namely LL’. By defining the supports for the diagonal values to
be positive we ensure that the resulting Γ matrix curvature restrictions are
satisfied. Note that the LL’ Cholesky decomposition of Γ has the restric-
tion that the resulting Γ matrix is positive definite. For the more general
case of a positive semi definite restriction Paris and Howitt (1998) use the
decomposition LDL’. In the Yolo case the zweights go from - 4.5 to 4.5
and are centered on zero. The triangular Cholesky decomposition L must
have positive diagonal elements, so the diagonals have a zweight set that
are strictly positive and range from 0.00-1 to 2.0. In contrast, the off diago-
nal elements have to be able to represent the cost effects of complementary
crops that would lower the cost of a given crop, or substitute crops that
compete for resources and increase the costs of a given crop. It follows that
the zweights for the off-diagonal elements of L can be positive or negative,
but are unlikely to have as much influence on marginal costs as the direct
diagonal coefficients, and are therefore set at values that range from -1.5 to
1.5. The z values are generated by multiplying the z weights by Lam, the
PMP marginal cost value from the previous stage, namely the sum of the
average cost and the λ2 value for the relevant crop.

The ME Parameter Reconstruction Model Following the pattern of
equation 9.8 the full PMP matrix for the Yolo county model is reconstructed
by solving the following maximum entropy problem. Assuming that the z
values for the alpha and L, and i x k triangular matrix, have been defined
above, the ME problem for a production unit with i crops is:

max −ΣiΣppapi ln papi − ΣiΣkΣp plpik ln plpik (9.11)
subject to Lami = Σpzapipapi + Σi[Σk(Σpzlpikplpik) ∗ (Σpzlpkiplpki)]xi

Σppapi = 1, Σpplpik = 1, papi, plpik ≥ 0
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The optimal values for papi and plpik are used to generate the α and Γ
parameters:

αi = Σp zapipapi (9.12)
γik = (Σp zlpikplpik) ∗ (Σp zlpkiplpki)

The resulting α vector and Γ matrix are now used to solve the standard
nonlinear optimization PMP problem:

max Σipi ∗ yieldi ∗ xi − Σi αixi − 0.5ΣiΣk zikxixk (9.13)
subject to Σiaijxi ≤ bj

xi ≥ 0

This PMP-ME model will calibrate exactly in inputs and outputs, but
the objective function will differ from the Linear program solution because
of adjustment of the resource opportunity cost based on the marginal crop
elasticity, as discussed in the previous chapter.

9.3 Using Prior Elasticities- The Heckelei-Britz ME-
PMP Approach

Informative Prior z-values: A problem with the basic PMP-ME ap-
proach is that the curvature restrictions and the prior supports for the Γ
matrix are inextricable. Essentially this prevents the direct use of priors on
Γ such as estimates of the elasticity of supply. In a more general specifi-
cation, Heckelei and Britz (2000) show how the z-values on the cost slope
parameters are defined to be informative, in that their centering value is
defined by the model parameters and a prior elasticity value. The elasticity
value is entered in the same manner as in the PMP elasticity calibration, and
forms a stronger basis for the defined z-values. Note this elasticity is based
on ”scalar” reasoning, in the calculation is based on single coefficients and
ignores the effect of the off diagonal coefficients and resource constraints,
however, as can be seen from the empirical elasticity test, they do give the
model an operating range of elasticities.

More in this section later:
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9.4 Obtaining Consistent Estimates of Resource
Shadow Values

The basic PMP model defined in sections .. is defined as a primal model
where the shadow values for the constraining resources are determined by the
calibration constrained linear model, although the model that we maintain
is closer to the true situation is the nonlinear PMP model.

9.4.1 The Symmetric Positive Equilibrium Model:

Paris and Howitt (2001) address the problem of inconsistent shadow values
by specifying a symmetric model SPEP that simultaneously calibrates the
primal and dual constraints of the problem. Using the notation in section
... the symmetric problem is defined as ..

More in this section later:

9.4.2 The Heckelei and Wolff Critique and Solution:

Heckelei and Wolff (2003) point out that the use of the dual shadow values
estimated in the initial linear model is inconsistent with the nonlinear cost
or production functions used in the PMP calibration specification...

More in this section later:
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9.5 Reconstructing Production Function Models

While both ME and standard PMP models calibrate correctly and have
consistent output supply and input demand elasticities, other than land,
the production technology is still Leontieff. In this section we show how
we can use the initial calibrated LP stage to calculate the crop specific
land opportunity costs, and then use the ME approach to reconstruct the
parameters of a production function. In order to have the multi-output
crops calibrate with constant linear output and input prices we require that
the production functions show decreasing returns to scale. There are sev-
eral methods of analytically calibrating CES and Cobb Douglas production
functions to observed cost shares ( See Howitt (J Ag Econ 1995 ) Useful as
these methods are, they are invariably specified as homogenous of degree
one, with constant returns to scale (CRS). The CRS nature of the produc-
tion function requires that the crops in the model have to be calibrated by
PMP nonlinear cost functions. This raises a fundamental theoretical incon-
sistency in this type of ”ad hoc” model, in that the production and cost
specifications are not consistent. A consistent approach is to calibrate a
more general class of production functions, namely the Quadratic produc-
tion function and its associated Trans-log and Generalized Leontieff forms.
Essentially, we are going to change our basic calibration assumptions from
a model where we assume constant per acre yields and increasing costs, to
one where the increasing costs are caused by the decreasing marginal pro-
ductivity of inputs with expanded scale, and input prices are constant. The
fundamental quadratic production function for each crop is defined below
in equation 9.14. Note that the input quantities xji are now defined as the
total input quantity for the farm , region, or other modeling unit. Inputs are
not measured in per acre terms as in all the other models. This is because
the production function for a given crop regards land as another input whose
marginal conditions define its allocation. The model is now able to trade off
on both the intensive and extensive margins, namely the extensive margin of
how much land is used in producing crop j, and the intensive margin of the
quantity of other inputs to allocate to crop j. The crop yield per acre is now
an endogenous variable in contrast to the usual PMP model where yields
are fixed parameters. Defining the subscript ”k” as an alias of subscript ”i”,
the production function for the jth crop is:

yj = Σiαjixji − 0.5ΣiΣk zjikxjixjk (9.14)

The production function based optimization model that uses equation 9.14
for j crops each with i inputs is defined as:
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max
x

Π = Σj(pj [Σiαjixji − 0.5ΣiΣk zjikxjixjk]− Σiωixji) (9.15)

subject to Σjxji ≤ bi

xji ≥ 0

The first order conditions for this model, when set equal to zero are:

δΠ
δxji

= pj(αji − Σkzjikxjk)− ωi − λi = 0 (9.16)

The first order constraints for the production function model can be
explained as equating the marginal physical product of each input in each
crop with the ratio of the total marginal cost of a unit of input (input price
plus opportunity cost) to output price.

ωi + λi

pj
= αji − Σkzjikxjk (9.17)

Note that equations 9.16 and 9.17 satisfy the conditions that equate the
value marginal product of an input used in all crops to its marginal cost. In
addition to the usual first order conditions above, we also want the produc-
tion model to calibrate to the average product or yield per acre, essentially
ensuring that the marginal conditions integrate correctly to the total crop
product observed in the base year. Given that crop and animal yields are
a data source that farmers can remember with accuracy, it is important to
use this information to calibrate the model. Thus the ME reconstruction
of the production function is restricted by both marginal and total product
constraints. The total product constraint is:

yieldj ∗ xj,land = Σi(αjixji − 0.5Σkzjikxjkxji) (9.18)

To ensure that the resulting optimization model satisfies the second order
conditions for a unique optimum, we have to impose symmetry and positive
definite restrictions on the matrix of the quadratic production function. We
use the same Cholesky decomposition approach as used in the PMP-ME
model. Accordingly, the Zeta matrix in the quadratic production function
is estimated by the Cholesky matrices L, where Z = LL′. The resulting
maximum entropy reconstruction problem is:
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max −ΣjΣiΣppapji ln papji − ΣjΣiΣkΣp plpjik ln plpjik

subject to

ωi + λi

pj
= Σpzapjipapji − Σi[Σk(Σpzlpjikplpjik) ∗ (Σpzlpjkiplpjki)]xji (9.19)

yjxj,land = Σi[(σpzapjipapji)−0.5∗Σk[(Σpzlpjikplpjik)∗(Σpzlpjkiplpjki)]xjk]xji

Σppapji = 1, Σpplpjik = 1, papji, plpjik ≥ 0

The ME production model optimizes the values for papji and plpjik. The
optimal values for papji and plpjik are used to generate the α and Z param-
eters:

αji = Σp zapjipapji (9.20)
zjik = (Σp zlpjikplpjik) ∗ (Σp zlpjkiplpjki)

The resulting α vector and Z matrix are now used to solve the nonlinear
production function optimization problem:

max Σj [pj ∗ (Σi[αji − 0.5 ∗ Σkzjikxjk]xji)− Σixjiωi] (9.21)
subject to Σjxji ≤ bi

xji ≥ 0

This quadratic production function problem calibrates in terms of input
quantities, output quantities, yields, and the Adj adjusted shadow value for
land and other fixed inputs. As with the PMP-ME model the objective
function does not calibrate to the initial LP value due to the use of prior
supply elasticity values on the marginal land using crop. To reiterate, the
production function model in equation 9.21 above responds to changes in
output or input prices by adjusting at the intensive and extensive margins.
Thus a change in the quantity of water available can no only change the
proportions of crops grown, but also the amount of fertilizer applied and the
resulting crop yield.
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9.5.1 Calculating Comparative Static Parameters

The quadratic production function model has convenient properties for cal-
culating policy parameters. Defining equation 9.21in matrix terms for a
single crop j, produced by an i× 1 vector of inputs xj we get:

Πj = p(α′xj − 1
2
x′jZxj)− ω′xj (9.22)

Note that the Hessian of the unconstrained profit function above is sim-
ply:

∂2Π
∂x2

ij

= Z

Calculating the Derived Demands for Inputs: For simplicity, we
will use the unconstrained profit function for a single crop in equation 9.22:

∂Πj

∂xj
= p′j(α− Zxj)− ω = 0

−Zxj = ω
pj
− α

x∗j = Z−1α− Z−1 ω
pj

Define the matrix of demand slopes as: Gj = Z−1 1
p and the vector of

intercepts aj = Z−1α. Using these definitions, the vector of optimal input
demand quantities for crop j is a function of the crop price pj and the vector
of input prices ω and is:

x∗j = aj + Gjω (9.23)

From the above equations, it is clear that if we can invert the Hessian
of the profit function (Z−1) we can calculate the derived demand for each
input for each crop as a linear function of input and output price.
Note

First: That x∗j is an i× 1 vector of the optimal inputs for crop j, and aj

is an i × 1 vector of intercept terms and Gj is an i × i matrix of derived
demand slopes.

Second: That the demand for a given input i used in crop j is a function
of the prices of the other inputs as well as its own price.
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Third: The elasticity of demand is based only on the own price effect, thus
we want GAMS to use only the ith diagonal elements of DSj . The elasticity
of the input demand for xi in crop j is:

ηij = Gj,i,i
ωi

x∗i
(9.24)

Note that this elasticity is based on a single crop. For the usual multi-output
case, we weight the individual crop contribution by their relative resource
use to arrive at a weighted elasticity for the resource.

Calculating Supply Functions and Elasticities: Since production is a
function of optimal input allocation and we now have the input demands as a
function of input and output price, we can derive the output supply function
by substituting the optimized input derived demands into the production
function and simplify in terms of the output price. Going back to the derived
demand and production function formulæ:

x∗ = Z−1α− Z−1 ω

pj
and y∗j = α′x∗ − 1

2
x∗Zx∗ (9.25)

Defining ri = ωi
pj

and using the vectors α and r, we get:

y∗ = α′Z−1(α− r)− 1
2
(α− r)′Z−1ZZ−1(α− r) (9.26)

Multiplying out and collecting α and r terms yields:

y∗ =
1
2

α′Z−1α− 1
2

r′Z−1r

y∗ = α̂− 1
2

(
ω1

pj
· · · ωI

pj

)′
Z−1

(
ω1

pj
· · · ωI

pj

)

Factoring out pj results in:

y∗ = α̂− 1
2p2

ω′Z−1ω (9.27)

Substituting the expression for ∂y∗
∂pj

into the supply elasticity formula,
and separating out ω and p, we get the supply elasticity expression:
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∂y∗

∂pj
= 1

p3 ω′Z−1ω

ηsj = ∂y∗
∂pj

pj

y =
1
p3

ω′Z−1ω
pj

y

ηsj = 1
p2yj

ω′Z−1ω

Calculating Elasticities of Input Substitution: There are many elas-
ticities of substitution with different advantages and disadvantages. To
demonstrate that we can obtain crop and input specific elasticities of sub-
stitution we use the classic Hicks elasticity of substitution defined for the
two input case by Chambers (1988, p 31) as:

y∗ = f(x1 . . . xI)

σ1,2 =
−f1f2(x1f1 + x2f2)

x1x2(f11f2
2 − 2f12f1f2 + f22f2

1 )

where fi and fij are derivatives.

Further Reading See Golan et al. (1996); Mittelhammer et al. (2000);
Paris and Howitt (1998)

9.5.2 Using Alternative Functional forms for the Production
Function

Throughout this analysis we have used the quadratic production function.
Two other functional forms that are widely used are the Generalized Leontief
and Translog production functions. As would be expected, the ME empirical
reconstruction methods outlined in this chapter apply equally well to these
production functions. For illustration, I show the production surface for
all three production specifications for the Yolo model simplified to the two
inputs of land and water.

This section showed that we can reconstruct fully flexible production
models from minimal data sets, and that there is a continuum of models
between the basic LP and fully flexible econometric specifications, that are
able to reflect complex production properties with minimal data sets.
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Figure 9.5:

Figure 9.6:
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Figure 9.7:



Chapter 10

Empirical Dynamic Policy
Models

Using Polynomial Approximations to Solve Stochastic Dynamic Program-
ming Problems: or A “Betty Crocker” Approach to SDP.1 Ed: Check
dating on this wp.

10.1 Introduction

Despite its tremendous methodological appeal in solving inter-temporal eco-
nomic problems, Dynamic Programming (DP) has not been as widely used
for the empirical analysis of natural resource problems as was initially ex-
pected. In the early sixties, Burt and Allison (1963) predicted that Dynamic
Programming would shortly become a standard economic tool for agricul-
tural and natural resource problems. Forty years later, however, there are
still relatively few economic resource management studies published that
use Deterministic or Stochastic Dynamic Programming (SDP) as an ana-
lytical tool. One reason may be that the computational methodologies for
implementing these types of programming problems have not been widely
accessible. SDP programs have mostly lain in the domain of Fortran special-
ists who have invested considerable time in crafting custom-written solution
algorithms.

In this chapter we would like to demonstrate a methodology for solving
deterministic DP or SDP problems in standard optimization software such
as GAMS, with an efficient and robust computational algorithm that draws

1adopted from Howitt et al. (2002b).
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upon approximation theory. The central philosophy of the approach is to
minimize the computation stages that require discrete point evaluations. In-
stead, we use computational economic approximation methods Judd (1999)
to fit continuous value functions,2 and thus maximize the use of standard
nonlinear solver routines, which have seen substantial advances over the past
two decades. For example, we use the value iteration method to obtain the
value function that solves the Bellman equation instead of the more popular
policy iteration method, which is adopted mainly as an acceleration method
(Judd, 1999; Bertsekas, 1976; Provencher and Burt, 1994). Miranda and
Fackler advocate a hybrid approach that uses a continuous representation
of the state variable while defining the control variables over a set of dis-
crete values. They do this to avoid re-computation of the basis functions
for the polynomial approximation to the value function and to maintain a
linear solution procedure within the vector/matrix computing environment
of MATLAB and GAUSS. In contrast, we specify both the state and control
variables as continuous (but bounded) and use a non-linear solver in GAMS,
which allows us to rapidly recompute the polynomial approximation terms
at each iteration. The value iteration method converges rapidly and, in our
case, enables us to specify both the state and the control variables as con-
tinuous, which allows us to examine a wider range of policies for natural
resource problems.

While the individual components of the approach are not original in
themselves,3 the integration of these methods using a standard software
package into a seemingly robust and general solution approach has value. We
raise the analogy to Betty Crocker cake mixes, since predictable standard
cakes mixes make a culinary contribution, and we think that the current
state of SDP solution algorithms is similar to requiring that everyone bake
a cake from scratch.

We feel that there is a significant contribution in making empirical
economists aware of techniques that are available to solve this wide-ranging
and important class of inter-temporal economic models. We are now able to
claim that a large class of dynamic economic problems can be empirically
solved by standard nonlinear optimization programs. The class of problems
includes deterministic optimal control problems with finite or infinite hori-
zons, and stochastic dynamic programming problems over finite or infinite
horizons. In all cases, our approach is subject to the standard microeco-

2In contrast, Williams and Wright (1991) use a continuous approximation of the deriva-
tive of the value function.

3Provencher (1994) and Provencher and Bishop (1997) have used the same polynomial
approximation to solve a stochastic resource problem.
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nomic assumptions of:

• Value functions that are continuous in the controls and state variables.

• Value functions that are concave in the controls and state variables.

• A decision-maker who optimizes the sum of expected discounted val-
ues.

The remainder of the chapter is organized in the following way. In the
next section, we describe the general value-iteration approach to solving
an infinite-horizon DP problem, and then describe the particular polyno-
mial approximation technique that we use. In the following section, we
will show how well this approximation technique performs in comparison to
a standard polynomial approximation, within the context of a well-known
macro-economic growth model. We then extend the approximation method-
ology to solve finite time, stochastic dynamic problems. In the last section,
we develop an empirical application of SDP to a simple natural resource
management problem.

10.2 The Value Iteration Approach

In this approach, we seek a numerical approximation to the infinite hori-
zon value function that maximizes the value of the problem resulting from
decisions carried out in the future.

For a generic objective function f(xt, ut) and an equation of motion for
the state variable xt+1 = g(xt, ut), we can write down the Bellman equation
as:

V (xt) = max
u
{f(xt, ut) + βV (xt+1)|xt+1 = g(xt, ut)} (10.1)

. . . and proceed to solve it forward, once we have an adequate represen-
tation of the value function, such that the above relationship will hold for
each stage (time period) along the optimal path. In other words, we seek
a polynomial approximation to an unknown function, such that the sum of
the maximized intermediate function and the discounted “carry-over” value,
evaluated by the function, maximize the total value function. This is essen-
tially the idea of the mapping relationship given by V s+1 = TV s, where T is
a mapping that generates the sequence of approximations for s = 0, 1, . . . , S,
which converges to a stable value such that V = TV holds. There are two
fundamental propositions that underlie such a procedure, namely:
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1. That any function can be approximated by a polynomial of sufficient
order.

2. That such a function can be found within a finite number of iterations.

The proof for the second proposition is given by the contraction mapping
theorem (applied in n stages by Stokey and Lucas with Prescott, 1989). [Ed:
need citation]

The Bellman relationship in 10.1 can be written in a more compact form
as:

V (xt) = max
xt+1

{
f(xt, g

−1(xt, xt+1)) + βV (xt+1)
}

(10.2)

. . . where we use the inverse of the equation of motion to express the con-
trol variable as a function of current and future values of the state variable.

The particular functional form that we’ve chosen for the polynomial
approximation to the infinite-horizon is a Chebychev Polynomial, which
belongs to a family of orthogonal polynomials described by Judd (1999) and
implemented by Provencher and Bishop (1997) and Miranda and Fackler.
We can think of the polynomial terms as analogous to a basis that spans
the approximation space for the value function. The approximation takes
the form:

V (x) =
∑

i

aiφiM(x)

. . . where ai is the coefficient of the ith polynomial term φiM(x), which
is defined over the interval given by the mapping x̂ = M(x), which is [-
1,1] in the case of the Chebychev polynomial. The terms of the Chebychev
polynomial are sinusoidal in nature, and are given (for the nth term) by
the relationship φn(x̂), which is more easily enumerated by the following
numerical recursion relationship for n polynomial terms:

φ1(x̂) = 1
φ2(x̂) = x̂

φ3(x̂) = 2x̂φ2(x̂)− φ1(x̂)
... =

...
φn(x̂) = 2x̂φn−1(x̂)− φn−2(x̂)

Figure 10.1 shows five terms of the Chebychev polynomial terms over
its domain where the orthogonal nature of Chebychev polynomials is quite
clear. Notice that the function is defined on the [-1,1] interval.
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Figure 10.1: Graph of the Chebychev Polynomial Terms over its Domain

Following the discussion in Judd, the algorithm for obtaining the ap-
proximation to the value function V (x) (x ∈ [a, b]) incorporates Chebychev
regression, interpolation and scaling into one efficient procedure

1. The nodes at which the value function approximation will be evaluated
are given by:

x̂k = cos
(

2k − 1
2m

π

)
∈ [−1, 1]fork = 1, . . . ,mwherem ≥ n + 1

2. Solve the Bellman Equation for each of the m interpolation nodes and
save the maximized values given by:

V (j)(xk) = max
x+

k

{
f(xk, g

−1(xk, x
+
k )) + βV (j−1)(x+

k )
}

where x+
k is the value of the state variable in the next period resulting

from the maximization at node k, and V (j−1) is the approximation of
the value function from the previous iteration (initialized at iteration
0 by an initial guess). The mapping of x̂ onto x (x̂ 7→ x) is given by
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the relationship

x̂k =
(

2(x− a)
b− a

)
− 1

3. Update the polynomial coefficient values (for iteration j) by the re-
gression:

a
(j)
i =

m∑
k=1

V (j)(xk)φi(x̂k)

m∑
k=1

φi(x̂k)φi(x̂k)

and obtain the updated value function

V (j)(x) =
∑

i

a
(j)
i φi

(
2x− (a + b)

b− a

)

for use in the next iteration with the Bellman equation.

This procedure is iterated until the polynomial coefficients are deemed
sufficiently close for numerical convergence. In other words, the error sum
of squares

∥∥a(j) − a(j−1)
∥∥2

is evaluated for each iteration and is compared

to a tolerance (ε) until the condition
∥∥a(j) − a(j−1)

∥∥2
< ε holds, at which

time the iterations terminate.

10.3 A Classical Growth Model Example

For our numerical example, we choose the neo-classical optimal growth
model of Brock and Mirman (1972) [Ed: need citation], which postu-
lates fixed labor supply, Cobb-Douglas technology and logarithmic utility.
The problem of the social planner is given by the infinite-horizon problem:

max
{ct,kt}∞t=0

∞∑

t=0

βt ln(ct)

subject toct + kt+1 ≤ Akα
t

which can be equivalently written as:

max
{kt+1}∞t=0

∞∑

t=0

βt ln(Akα
t − kt+1)
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and restated in the recursive Bellman form as:

v(kt) = max
kt+1

{ln(Akα
t − kt+1) + βv(kt+1)}

and solved for each period t.
Sargent (1987) shows that the infinite horizon value function is given (in

the limit) as:

v(k) =
ln(A(1− αβ)) +

(
αβ

1−αβ

)
ln(Aαβ)

1− β
+

α

1− αβ
ln(k)

which yields — when inserted into the Bellman Equation — the analytical
steady state value for capital:

k̃ =
(

1
αβA

) 1
α−1

When we approximate the “true” value function with the Chebychev
Polynomial given by successive contraction mapping according to: Tv(j)(kt) =
maxkt+1

{
ln(Akα

t − kt+1) + βv(j−1)(kt+1)
}
, we obtain the results shown in

figures 10.2 -10.4 :
Figure 10.2 shows how the Chebychev polynomial approximation con-

verges on the “true” value function as the iterations increase. For compar-
ison, we can see in Figure 10.3 how the Chebychev orthogonal polynomial
approximation performs relative to a simple cubic polynomial approximation(
V (x) = α0x + α1x

2 + α3x
3
)
, by considering Figure 10.3 Ed: check figure

refs!. It is clear that the Chebychev converges, while the cubic polynomial
has a substantial deviation from the true value function.

The Chebychev function converged in 553 iterations (given a tolerance
of 0.0001) compared to 751 for the cubic approximation. This demonstrates
the superiority of the Chebychev algorithm, in both efficiency and accuracy
of the approximation. As shown in Figure 10.4, the convergence is actually
exponential.

10.4 Solving SDP Problems

The continuous value function approximation outlined in the previous sec-
tion can be used to solve the larger class of more interesting stochastic finite
horizon problems. In the previous section we assumed that the underly-
ing value function is concave and continuous. In this section we add that
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the decision maker is interested in the expected outcomes of the stochastic
decision problems. For ease of exposition, we shall only address a single
state problem where the stochastic part of the problem is in the equation of
motion.

10.4.1 The General SDP Formulation

Let X denote a vector of state variables, u a vector of control variables, and
ẽ a vector of random events that influence the state variables, the objective
function or both. Note that we slightly change matrix and vector notation
here. The distribution of the stochastic vector is known, a priori. A general
formulation of a finite SDP is:

max
u

V (u,X, ẽ) (10.3)

subject to Xt+1 = g(Xt, ut, ẽ (10.4a)
ut ∈ Ψ(Xt, ẽt), X ∈ Ω (10.4b)
ẽis observable

The decision-maker’s objective function is to find the optimal set of
controls {u∗1, . . . , u∗T } that maximizes the objective 10.3 under a set of con-
straints. The objective function may be defined as the discounted sum of
profits or utilities.

The equations of motion define the dynamic evolution of the resource.
At each date, the level of a state variable is a function of the state variable
level at the previous date, the control and the realized stochastic variables,
Equation 10.4a. The problem is bounded by feasibility constraints. The
set Ψ represents the feasibility constraints for controls given the level of the
state variables and the stochastic variables. It may correspond to a set of
physical or technical constraints. The set Ω characterizes the state variable
feasibility constraints.

This general formulation of SDP encompasses most of the usual problems
in the field of natural resource management. The field of natural resource
management can be differentiated from conventional microeconomic theory
by the degree of spatial or temporal market failure. Temporal market fail-
ure is rooted in the stochastic equations of motion for the relevant resource.
Uncertainty in the evolution of an economic resource can be inherent in the
biological dynamics or exogenously caused by weather, prices, or institu-
tions. While SDP solutions are currently the only empirical approach to
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solving resource problems characterized by discrete time stochastic dynamic
equations of motion, the dominant use of SDP to date has been concentrated
in engineering studies of optimal normative intertemporal water allocation.

We consider the simplest representation of a resource network based on
a single state representation in a complex network system.4 The dynamics
of the system are given by:

Xt+1 = Xt + ẽ1t − ut (10.5)

The change in natural resource stock must balance the stochastic change
(ẽ1t) and the resource use (ut). The index t in 10.5 denotes time period.
The final demand for resource services is satisfied by resource flows from Xt,
namely ut.

We define the following timing of information and controls. First, the
decision-maker observes the realization of the exogenous stochastic stock
change variable ẽ1t and hence Xt. Second, the decision-maker chooses the
control ut, the level of resource extraction or harvest.

The intermediate value of flow resources is defined by the inverse demand
function: P (u). The net surplus, W (u), derived from resource consumption
is denoted by:

W (u) =

q∫

0

P (u) du (10.6)

The net surplus of resource consumption is a concave increasing function
of q.

The decision-maker wishes to maximize their utility subject to the equa-
tion of motion for the natural resource stock and the feasibility constraints.
The resulting Bellman equation is:

max
u

Vt = {Wt(ut) + βEe1 [Vt+1(Xt+1)]} (10.7)

subject to Xt+1 = Xt + ẽ1t − ut (10.8a)
Xt+1 ≥ X (10.8b)
Xt+1 ≤ X (10.8c)

ut ≥ 0 (10.8d)
4For multi-state systems, the single state is decoupled from the network by approxi-

mating the network by two elements: a natural resource, with a stochastic change over
time. ẽ1t and stock Xt at each date t, and the resource flows from the rest of the system
characterized by a stochastic variable ẽ2t. For an empirical example see Howitt et al.
(2002a).
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The stochastic control problem consists of choosing a sequence of decision
rules for allocating resource flows that maximize the objective function (10.7)
subject to (10.8a)-(10.8d). At each date, the current net surplus depends on
the water releases. Consequently the objective function is the expectation
of the current net surplus. All model parameters and functions are the
same for all decision stages, implying that the problem is stationary. If the
planning horizon is infinite, the optimal decision vector in state space for
any decision stage is the same for all stages. The value of the system at
any stage is likewise the same for all stages and is finite, even though the
planning horizon is infinite, because the returns at all stages are discounted.
The stochastic dynamic recursive equation that defines the optimal natural
resource management problem is:

Vt(Xt, ẽt) = max
u

{
Wt(ut) + β

[∫
Vt+1(Xt+1, e) dΦ1

]}
(10.9)

subject to Xt+1 = Xt + ẽ1t − ut (10.10a)
Xt+1 ≥ X (10.10b)
Xt+1 ≤ X (10.10c)

ut ≥ 0 (10.10d)

where V (·) is the value function, u must be feasible and Φ1 is the prob-
ability density function (pdf) for the random variable ẽ1.

Instead of the traditional methods of evaluating the value function for
discrete points in the probability, control and state spaces, we make two
approximations, the first on the value function and the second on the infor-
mation accumulation by the decision-maker. We approximate the expected
value function by assuming that it is a continuous function in state space.
In addition, we assume that the decision-maker at any time regards the
stochastic control problem as a closed loop problem based on the most re-
cent information. The information contained in the observed level of the
state variable is updated each time a stochastic realization is observed. Es-
sentially, we assume that the state variable value function for the finite
stochastic problem is adequately modeled for the next period by a function
of the current state variable over an infinite horizon. Implicitly, this ap-
proximation assumes that the ability of the decision-maker to observe the
updated level of the state variable in the future does not change the current
optimal control given the current state of the system. These two assump-
tions enable us to solve the resulting SDP problems rapidly and reliably in
a two-stage procedure.
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Stage one, shown in Figure 10.5, [Ed: if we make the boxes into a
figure, it takes a page on its own. Let’s discuss], solves for the infinite
time expected value function as a continuous function of the state variable.
We use the value iteration method to solve for the second recursive term (the
state variable value function) in equation 10.9 for a selected set of values
of the state variable5. The value iteration method consists of assigning an
arbitrary initial value for the value function, and then recursively solving
the maximization problem until the decision rule converges to a constant
function that is invariant over time. In our approach we also fit a continuous
polynomial approximation to the value function over the set of selected state
variable values at each iteration. It follows that the convergence of the value
function in steady state also requires that the polynomial approximation
converges.

Bellman has suggested that the curse of dimensionality could partially
be overcome by approximating the value function as a polynomial on a rele-
vant interval, (Bellman, 1961). This approach has been useful for researchers
solving discrete choice dynamic programming problems, where the numer-
ical challenges of multi-dimensional integration and approximation of the
value function at alternative choice nodes have to be tackled simultaneously
(Keane and Wolpin, 1994).6 A second advantage of polynomial approxima-
tion is that it avoids the discrete approximations needed for a finite state
Markov process. However, the major operational advantage of having a con-
tinuous function for the expected value function is that the forward solution
becomes a simple nonlinear optimization problem (NLP). Assuming that
the objective function (equation 10.9) is concave in the control variable, the
NLP problem is sequentially solved in continuous, but constrained, state
and control space. Clearly, the expected value function has to be approx-
imated over a set of discrete points in state space. We use the Chebychev
approximation of the value function to do this.

In stage two, shown in Figure 10.6, we start with the steady state values
for the Chebychev parameters scaled over the relevant interval in state space
from part one. The forward solution is initialized with the initial value for
the state variable and any observed perturbations during the first time pe-
riod. The first period optimal control results from the solution of a single
period nonlinear optimization problem. The solution trades off the current
short term returns against changes in the expected long term stock values

5We note that the derivative of the state value function at any time is the costate
variable value.

6Although, in their case they are approximating and interpolating the maximized value
of the value function over state-space, rather than the function itself.
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Figure 10.5: Solving for the Expected Value Function
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Figure 10.6: Solving for Optimal Stochastic Controls

implied by the control action and equations of motion. At the end of each
time period, we assume that the decision maker observes the actual stochas-
tic realization for that period, and updates the expected state value by the
realized value. This updated state value provides the initial conditions for
the NLP optimal control solution in the second period.

Given the continuous nature of the problem we can take advantage of
modern NLP algorithms and standard packages. The problem is solved
using Gams Conopt2, but any NLP procedure can solve the problem.7

7The program in Gams for this problem can be obtained from the authors. It is
easily modified to solve other single state discrete time SDP problems.
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10.5 An Empirical Application to Reservoir Man-
agement On the North Platte River

We illustrate the empirical solution of an SDP problem using a simplified
representation of water management on the North Platte River in Nebraska.
For ease of presentation we define the problem in its simplest terms and
limit our analysis to the inter-year management problem, a more complex
specification is used in Howitt et al. (2002a). The problem is to determine,
from year to year, the optimal water releases and the optimal carryovers.

The North Platte Storage Project (NPSP) can be modeled as a single
aggregated reservoir and a single release to the North Platte irrigators.8 Ac-
cordingly, Xt is the stock of water in NPSP reservoirs, F̃1t are the stochastic
levels of inflow to the reservoir, wt are the water releases from the reservoir
that produce water supply and hydropower benefits. The variation of the
reservoir storage plus the stochastic inflow must be equal to the water re-
lease wt, and the spills from the reservoir, spt. The spills balance the system
in times of high flows, but have no economic value in the model.

We assume that yearly inflows F̃1t are independently and identically
distributed (IID) with a log-normal distribution, i.e.:

F̃1t
iid∼ LN(µ, σ2) (10.11)

The aggregate inverse demand was generated using irrigation district
data from Supalla (1999). A simple quadratic form is fitted to the resulting
data yielding:

P (w) = 148.15− 129.58w + 28.859w2 (10.12)

where w is the quantity of water in millions of acre-feet (MAF) and P (·)
is the associated marginal value in millions of dollars per MAF.

The resulting net benefit function for water consumption is:

W (w) = 148.15w − 64.79w2 + 9.6196w3 (10.13)

The net benefit function is increasing and concave with water consump-
tion (as seen in Figure 10.7).

8The following eleven North Platte districts are aggregated to form the NPSP group:
Pathfinder, Gering-Ft Laramie, Gering, Farmers, Northport, Central, Brown’s Creek,
Beerline, Chimney Rock, Lingle & Hill, and Goshen.
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Figure 10.7: North Platte Water Release Benefit Function

The SDP Specification

The maximum storage capacity in the NPSP dams each year is 1.9 million
acre-feet (MAF). We assume a minimum storage constraint equal to 0.7
MAF. Data on actual inflows, releases and storage are available for 1960
to 1992. A log-normal distribution was fitted to the observations and used
to generate a set of eight discrete probabilities for the associated inflow
quantities. The decision-maker is assumed to maximize the sum of the
expected net present value of the water releases over this time period. The
maximization is subject to the equation of motion for the reservoir stock
and the feasibility constraints. The stochastic optimization program is:

max
w

Ut = {Wt(wt) + βEe1 [Vt+1(Xt+1)]} (10.14)

subject to: Xt+1 = Xt + F̃t − wt − spt (10.15a)
Xt+1 ≥ 0.7 (10.15b)
Xt+1 ≤ 1.9 (10.15c)

wt ≥ 0 (10.15d)

The discount rate β is set at 0.943, corresponding to an interest rate of
6%.
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10.5.1 Solving the model

The state variable (reservoir storage) is discretized in seven points from 0.7
MAF to 1.9 MAF. We consider a seven degree Chebychev polynomial ap-
proximation of the value function:

VC(X) =
5∑

i=0

aiTi(X̂) where X̂ = M(X) (10.16)

Where Chebychev polynomial coefficients ai (i = 1, . . . , 7) are iteratively
computed using the Chebychev regression algorithm, and M(X) is a map-
ping of X onto the [-1,1] interval (Judd, 1999). The program converged in
240 iterations and took four minutes and forty seconds on a two gigahertz
desktop machine. This result shows the substantial advantage of using a
Chebychev approximation to approximate the state variable value function.
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Figure 10.8: North Platte Storage Value Function

The criterion for convergence is that the sum of squared errors between
polynomial coefficients at two consecutive iterations, must be smaller than
1.00E−7 Ed: clarify scientific notation: Table 10.1 shows the Chebychev
polynomial coefficients Ed: for what, over what?.
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1 2 3 4 5 6 7
2090.3675 53.15513 - 3.1195 0.17897 -0.1456 -0.01425 0.006614

Table 10.1: Chebychev polynomial coefficients

To evaluate the quality of fit of our SDP, we simulate the optimal pre-
dicted releases and storage for NPSP reservoirs over the historic time pe-
riod, using the actual realized inflows to set the initial conditions for each
year’s optimization. As noted by Bertsekas (1976), the solution requires the
solution of t sequential optimization problems by nonlinear optimization
techniques.

Figure 10.9 presents the SDP policy simulations versus the observed ones
for water release (the control) and storage (the state). We stress again that
these predicted water storage and release levels result from the solution of a
series of single year NLP problems. The information used by the model in
any given year is only that which is available to the decision-maker, namely
the current storage level, the current runoff from rain and snowfall, and the
probability distribution of stochastic runoff in future years. The optimiza-
tion at each stage balances the marginal value of current releases against
the expected value of water stored and carried over for use in future years.
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Figure 10.9: Simulation of North Platte Water Releases

Figure 10.9 shows that the annually optimized results for the SDP track
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the actual releases fairly closely. It is worth noting that none of the release
quantities are constrained by their upper or lower bounds, 1.5 and 0.1 MAF
respectively. The resulting optimal releases are a result of trading off the
marginal expected present value of storage against the immediate marginal
returns from releasing more water.
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Figure 10.10: Simulation of North Platte Water Storage

The optimal storage results from the SDP solution in Figure 10.10 fol-
low the same pattern as the actual storage quantities. However, the actual
operators of the reservoirs were consistently more conservative, in that they
stored larger amounts of water than the SDP solution. This is to be expected
as the SDP is currently specified as risk neutral. However, it is more likely
that public decision makers will be risk averse. Calibration of intertemporal
preferences that improves the historical fit of the model using a recursive
utility objective function can be found in Howitt et al. (2002a). Again, the
optimal storage quantities in Figure 10.10 were obtained by a forward solu-
tion with no terminal constraints or penalty functions on the state variable.
Neither of the bounds on the state variable bind during the time period
simulated.

10.5.2 Using SDP as a policy tool

In this last section, we want to show how the SDP model can be easily used
as a policy tool. Once the value iteration has solved for the Chebychev value



10.5. NORTH PLATTE RIVER APPLICATION 199

function coefficients, the forward solution of the SDP can be run swiftly and
cheaply for a wide range of policy parameters. One cannot however change
the stochastic properties of the inflows, the discount rate or the interme-
diate value function without resolving for the Chebychev coefficients. An
additional advantage of this polynomial approximation approach for policy
analysis is that both the controls (releases) and states (storage) are continu-
ous functions of policy variables such as changes in storage for flood control
reasons, or changes in the effective inflow due to environmental river flow
regulations. The continuous functions are able to simulate subtle changes
in policy that may prove difficult for the traditional discrete control sets.

0.4
0.6

0.8
1

1.2
1.4

0.5

1

1.5

2
0.5

1

1.5

Local Inflow, MAF

Optimal Water Release Policy

Initial Storage, MAF

O
pt

im
al

 R
el

ea
se

, 
M

A
F

Figure 10.11: Optimal Water Release as a Function of Initial Storage and
Realized Inflow

Figure 10.11 gives the optimal water release as a function of the two
types of information that the decision maker has at the beginning of the
year, namely the initial water storage and the local inflow realization. It is
worth noting that due to the NLP formulation it took only 20 seconds to run
121 NLP solutions and generate the points on the surface of Figure 10.11.

In this risk-neutral SDP model, the level of initial storage in the reservoir
has a similar effect on the optimal release as the level of inflow. Since
the probability of spills from the reservoir is not a function of the storage.
The shape of the surface shows the marginal effect on releases, and thus
immediate revenues of changes in the initial storage quantity or realized
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inflow.

10.6 Intertemporal Calibration and Estimation

The empirical problem in the previous section solves and simulates effi-
ciently, but optimizes a simple net present value objective function that does
not reproduce the observed dynamic behavior very closely as shown in figure
... A positive approach to dynamic modeling would lead us to hypothesize
that there are additional parameters, or parameter values that may calibrate
the dynamic results more closely to the observed decisions. The net present
value objective function is separable over time, in that it only considers the
trade off between actions in the current and future periods. It seems inap-
propriate to restrict the type of dynamic objective function to those forms
that are not changed by the time profile of production or consumption. Thus
we consider a more general recursive utility objective function specification
which is ”path dependent”. That is to say, the current marginal rate of
substitution between periods is a function of all past decisions. The general
recursive specification ...

Continue with the development of the Howitt et al dynamic
estimation paper

10.7 Conclusions

This chapter has been deliberately technical and computational. Our aim is
to show precisely how easy it is to obtain empirical solutions to a wide range
of dynamic problems that face researchers and policy analysts in agricultural
and resource economics. We have aimed the chapter at a natural resources
researcher who is mathematically literate, but has not invested in becoming
proficient in the wide range of ingenious custom-tailored Fortran programs
that have been used to solve SDP problems over the past forty years. We
hope that the GAMS code available from the author’s web site
will not be used as a “Black Box”. Despite this misgiving, we want to
restate that the only requirements to run the program are:

• A continuous intermediate value function in the controls.

• A set of discrete quantities that span the values of the stochastic com-
ponent.

• A matching set of discrete probabilities for the stochastic values.
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• An equation of motion and bounds on states and controls.

In addition, we want to emphasize the point of the emerging field of
computational economics, namely, that like most “hard” sciences, there are
classes of problems in economics whose solutions can only be meaningfully
expressed by computational solutions. Stochastic dynamic programming is
one such class of problems.

We realize that this chapter has not addressed many of the harder
discrete choice, non-concave, and multi-state specifications that SDP re-
searchers have addressed in the past, but given its introductory nature and
space limitations, we hope that this chapter will stimulate additional work
of this nature.

Ed: need to “nocite” the other refs to get them in the biblio...
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